Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS Ad-hoc
S4-AHI071
September, 28th- October 1st, 2009
Seattle, USA
Agenda item:
8
Source:
NOKIA Corporation
Title:
Static HTTP Streaming
Document for
Discussion and Approval
1 Introduction

Static HTTP streaming is an approach for delivering media content over HTTP as static content. The serving web server is not required to prepare the content in any way. Instead, the content preparation is done in advance. This document discusses different options to realize static HTTP streaming. It concludes with proposals to adopt as working assumptions.
2 Static HTTP Streaming
Static HTTP streaming refers to the fact that the content preparation has been performed prior to making it available on the web server. The server may then be a traditional web server that serves the media file(s) as any other regular file. This also enhances the network performance, since cache hits become more likely, given that the options for requesting and controlling the content delivery are limited by the content provider. Hence, static HTTP streaming opts for deployment simplicity at the cost of reduced client control.
The static HTTP streaming solution defines how the content is to be formatted and stored as well as the client behavior to stream the content. The content preparation should provide the content in a format compliant with the 3GP file format. In order to prevent long download and processing delays, the metadata shall be fragmented in smaller fragments that cover media content of a relatively short duration (e.g. 1-10 seconds).
The content may be provided in one of two formats: 1) fragmented content: metadata and media data split over multiple pieces, each stored and accessible separately or 2) fragmented metadata: metadata stored in a single file as fragmented pieces.

Option 1 has some significant drawbacks which are the tedious content preparation process as well as the processing overhead at web servers and caches to manage thousands of small files per content piece. As an example, for one content item of 20 minutes duration and which is available in 5 different video bitrates, 2 different video codecs, 2 audio languages, the number of file pieces would be 2400 to 24000 for fragments of duration 10 seconds or 1 second respectively. On the other hand, it offers easy accessibility to the content for the client as well as very basic web server deployment.
The second option relies on the usage of HTTP byte ranges, which are widely used and supported by web servers and caches. The client extracts the appropriate media data by locating and referring to it using byte ranges. This approach reduces the effort for the content preparation at the cost of increased complexity at the client side.
Both approaches pose similar challenges with regards to the serving of live content and the seeking inside the content.

In the following sections, we describe in detail the two proposed approaches and their realizations. Furthermore, we propose a content delivery description format that is mainly suitable for the content provider to indicate how the content can be accessed, by providing URL construction patterns.
2.1 Content Delivery Description

The 3GP file format movie fragments shall be used to encapsulate and deliver the content. A movie fragment consists of the following boxes:

· “moof” box: encapsulates the metadata that describes a movie fragment.

· “mdat” box: encapsulates the media samples that are described by the corresponding “moof” box. The “mdat” box is optional and is only required if both metadata and media data are stored in the same file

· “mfra” box: encapsulates information about the timing of the samples and the position of random access points. The “mfra” box appears only once per metadata file. The client has to merge the multiple “mfra” boxes it receives from different file pieces, in case it wants to reconstruct a single 3GP file.

For fragmented media content, the corresponding 3GP file contains a file prefix that consists of the “ftyp” and the “moov” boxes. The “moov” box shall contain any sample descriptions and is, then, very light weight.
2.2 Fragmented Content

The content is fragmented in several uniquely accessible media fragments. Each fragment is equivalent to a 3GP movie fragment. A content fragment consists of a “moof” and “mdat” box pair, optionally followed by an “mfra” box. The fragment duration is constant and should be approximately the same for all content fragments. The duration of the content fragments is signaled out-of-band, e.g. in the content delivery description (see section 2.4).
The content fragments are assigned a fragment index. The index 0 refers to the file that contains the “ftyp” and “moov” boxes. The first content fragment is indexed by value 1. Each consecutive content fragment is assigned an index that is incremented by 1.

The URL to retrieve a specific content fragment is constructed based on the rules provided in the content delivery description file (see section 2.4).

This approach simplifies the realization of live streaming and of content seeking by allowing the client to retrieve content fragments based on their indices. The indices are easily mapped into time ranges. Contrary to dynamic HTTP Streaming, this approach is subject to the limitations of the fragmentation process used in the content preparation step.

2.3 Fragmented Metadata

The content is stored in 2 or more files, where the metadata is stored separately from the media data. The metadata is stored in a fragmented manner using metadata fragments as described in the following figure.

[image: image1.emf]Metadata file (compliant to 3GP file format with

references to external media data)

ftyp

mfra

moof

moof

mfhd

traf

tfhd

trun

trun

traf

tfhd

trun

trun

moov

mvhd

track

track

mvex

trextrex

drefdref

Media data

file(s)

The media data may be stored in one or more files. The samples of each media component (represented by a track in the metadata) have to be stored together in the same file. A reference to the URL of the file that contains the media data of a specific track is given in the “dref” box. The track fragments and track runs provide byte offsets to the media samples in the corresponding media data file.
The static HTTP streaming client establishes a TCP connection that is dedicated to the retrieval of the metadata. The media data is retrieved over a separate TCP connection(s). The metadata file is downloaded and progressively parsed to locate movie fragments. Upon successfully parsing a movie fragment, the corresponding media samples are retrieved using an HTTP GET request and with Range header field set to the appropriate media sample offsets.

The following is an example of an HTTP GET request with byte ranges:

GET http://www.example.com/content/mediafile.dat HTTP/1.1
Accept: */*
Host: www.example.com
User-Agent: NOKIA Client/5.0 (Compatible; Mozilla/4.0)
Range: bytes=235478-237983

The metadata file may be downloaded using one of the following options:
1. Complete download, if the size is known a-priori, i.e. in case of pre-recorded content

2. Partial retrieval using byte ranges and the size and type of the boxes (first 8 bytes). This is equally appropriate for live and pre-recorded content.

3. Download in HTTP/1.1 chunked mode, when the size of the file is not known a-priori, e.g. in the case of live streaming. The metadata is delivered in chunks, where each chunk indicates its relative size. The chunks are delivered sequentially.

In order to simplify offset calculation at the client side, both “base_data_offset” in the “tfhd” box as well as “data_offset” in the “trun” box shall be present. In addition, the “sample_size” and the “sample_duration” in the “trun” box shall also be present for each sample in the track fragment run.
The requirements on the content preparation format are easily verified by checking the “ftyp” box. A new brand is defined to identify an HTTP streaming profile of the 3GP file format.

A 3GP file that conforms to the HTTP streaming profile is branded as “3gh9”.
A 3GP file that conforms to the HTTP streaming profile shall satisfy the following constraints:

· Media data is stored in separate file(s) and referenced through “dref “ boxes

· Track grouping is used to identify alternative and switch tracks

· The “ftyp” box is followed by a “moov” box that has no samples

· The “moov” box shall contain an “mvex” box to indicate that movie fragments are in use

· The metadata for each fragment is stored in a “moof” box

· A “moof” box describes the samples for all tracks and for an approximately same time interval of the content
· The time interval should be from 1 to 10 seconds

· The “tfhd” and “trun” shall contain the base_data_offset and data_offset fields, respectively

· The “sample_size” and “sample_offset” shall be present for each sample in a “trun”
2.4 URL formatting and Content Delivery Descriptor
Both static (option 1) and dynamic HTTP streaming require knowledge of the procedure to be used to construct the URL for media data requests. This information is provided in the content delivery description file, which is the first file to be retrieved in those cases. The file may contain further information, such as the fragment duration, options on the request granularity, …

The content delivery descriptor is an XML file that conforms to the following XML schema:

	<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2009:PSS:HTTPStreaming"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace=" urn:3GPP:metadata:2009:PSS:HTTPStreaming "

elementFormDefault="qualified">

<xs:element name="3GPPHttpStreaming">

<xs:complexType>

<xs:sequence>

<xs:element name="parameter" type="ParameterType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="FragmentLocationURLPattern" type="xs:anyURI" usage="required"/>

<xs:attribute name="DefaultFragmentDuration" type="xs:unsignedInt" usage="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

</xs:element>

<xs:complexType name="ParameterType">

<xs:sequence>

<xs:element name="Option" type="OptionType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="ParameterName" type="Parameters" use="required"/>

</xs:complexType>

<xs:complexType name="OptionType">

<xs:sequence>

<xs:element name="OptionValue" type="xs:string" minOccurs="1" maxOccurs="1"/>

<xs:element name="OptionDescription" type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="Parameters">

<xs:restriction base="xs:string">

<xs:enumeration value="ConfigurationParameter"/>

<xs:enumeration value="BandwidthParameter"/>

<xs:enumeration value="LanguageParameter"/>

<xs:enumeration value="MediaCodecParameter"/>

<xs:enumeration value="FragmentIdParameter"/>

<xs:enumeration value="FragmentStartTimeParameter"/>

<xs:enumeration value="FragmentEndTimeParameter"/>

<xs:enumeration value="FragmentDurationParameter"/>

<xs:enumeration value="TrackIdsParameter"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

The above defined XML schema allows the content provider to provide in the “FragmentLocationURLPattern” a pattern that is used to build the URL to access the content. The URL pattern contains a set of placeholders that correspond to certain parameters. At the client side, the placeholders are replaced by possible values for the corresponding parameters using simple string substitution operations.
The following parameters are currently defined:

· ConfigurationParameter: gives possible values for content configurations. This may e.g. include different combination of media tracks. The value for this parameter may be selected by the user.

· BandwidthParameter: gives possible total bandwidth requirements for consuming the content. The content may be encoded at different bitrates and the client selects the most appropriate bitrate depending on his current bandwidth capacity. The values are given in units of bits per second.

· LanguageParameter: describes different language options for consuming the content. The language tag is indicated based on RFC 4646.

· MediaCodecParameter: gives the media codecs that are used for encoding a specific representation of the content.
· FragmentIdParameter: is a placeholder for the identifier of a fragment. The fragment identifiers start with value 1 for the first fragment and are incremented by 1 for each subsequent fragment. The fragment ID 0 is reserved for the file prefix, i.e. “ftyp” and “moov” boxes in the beginning of the 3GP file.
· FragmentStartTimeParameter: gives the start time of the requested fragment, for the case of dynamic HTTP streaming. The value is expressed in NPT time format.
· FragmentEndTimeParameter: gives the end time of the requested fragment, for the case of dynamic HTTP streaming. The value is expressed in NPT time format.
· FragmentDurationParameter: gives the duration of the requested fragment, for the case of dynamic HTTP streaming. The value is expressed as a decimal number including seconds and fractions of seconds, as used in the NPT time format.
· TrackIdsParameter: is a placeholder for an array of track id identifiers, separated by a “+” sign.
The URL pattern allows the client to request the next fragment by setting the correct FragmentIdParameter value in the URL. This approach is especially suitable for live content, where no a-priori knowledge of the fragments exist. It also allows relatively accurate time seeking in combination with the DefaultFragmentDuration attribute.
3 Proposal

We propose the following:
· Adopt the 3GP file format based on movie fragments for the delivery of metadata and media data over HTTP.

· Adopt the proposed two options (with or without usage of byte ranges) for the static delivery of media content over HTTP

· Adopt the XML schema as a starting point for the content delivery descriptor.

· Refine the set of possible parameters and the URL pattern scheme according to the needs of 3GPP HTTP Streaming.
- 5/7 -

_1315643210.vsd
moof

moof

mfhd

traf

tfhd

trun

trun

traf

tfhd

trun

trun

ftyp

mfra

moov

mvhd

track

mvex

trex

track

trex

Metadata file (compliant to 3GP file format with references to external media data)

dref

dref

Media data file(s)

