3GPP TSG-SA4 EVS SWG Conference Call on FCNBE
AHEVS-479
September 26, 2019




Agenda item: 
3
Source: 
Fraunhofer IIS, Intel, Apple 

Title: 
EVS Float Conformance verification
Document for
Discussion & Agreement
1 Introduction

In the work item on "EVS Float Conformance for Non Bit-Exact" (EVS_FCNBE) defined in S4-181225[1] the objectives of the WID are:
· Refinement of the conformance criteria proposed in TR 26.843, based on the latest reference code. The conformance process and criteria should be tight enough to avoid interoperability issues 

· Tools and conformance test vector availability to perform conformance tests

· Further verification of the loudness tool 
· Additional testing including validation that more general code changes are properly detected

· Definition of a mandatory conformance process for the usage of TS 26.443 using the tools developed in the study item FS_EVS_FCNBE, conformance criteria and conformance test vectors
Various contributions were made in previous meetings covering these objectives. This contribution provides the verification results of the conformance process proposed.

2. Reference Implementations
The conformance process criteria for the tests are based on a set of Reference Implementations. Ten Reference Implementations, listed in Table 1, were used. They are based on mainstream compilers and platforms and used the latest version of EVS code defined in TS 26.443. These implementations are not bit-exact between themselves or with the 3GPP reference implementation (MS Visual Studio 2018, Release mode).
Table 1: List of Reference Implementations 

	Name
	Platform
	Compiler
	Optimization
	OS

	aarch64_gnu-gcc-8_-armv8_O2
	ARMv8
	GCC v8
	O2
	Linux

	aarch64_gnu-gcc-8_armv8_O3
	ARMv8
	GCC v8
	O3
	Linux

	clang-6_armv8 _O2
	ARMv8
	Clang v6
	O2 with FMA
	Linux

	clang-6_armv8_O3
	ARMv8
	Clang v6
	O3 with FMA
	Linux

	clang-6.0_x86_64_O2
	x86_64
	Clang v6
	O2
	Linux

	gcc-7_i686_-O0
	i686
	GCC v7
	O0
	Linux

	gcc-7_i686_-O1
	i686
	GCC v7
	O1
	Linux

	gcc-7_i686_-O2
	i686
	GCC v7
	O2
	Linux

	gcc-7_i686_-O3
	i686
	GCC v7
	O3
	Linux

	icc-19_x86_64_avx2
	x86_64
	ICC v19
	O3 with FMA
	Linux


In case of updates to the EVS reference code, a new set of thresholds for SNR and MLD will be recomputed based on these implementations. In case some of the compilers become obsolete this list may be revised.
3. Validation of the Conformance Process
To validate the sensitivity of the conformance process, 13 implementations with different component configuration (platform, compiler, etc...) and code changes are tested. They are listed in Table 2.
The outcome could be classified in 2 categories: the ones that should pass (as normal optimization and no code change were made), and the ones that should fail (as too aggressive optimization or code changes were made). 
Note that the FLC_Test1A code contains both encoder and decoder code changes, as explained in [5]. FLC_Test2 only contains a decoder code change.
Several implementations are bit exact with Microsoft Visual Studio Debug version, but only one is used in this list (gcc-6_x86_64_O3).
Table 2. List of implementations used for Verifications

	Name
	Code
	Platform
	Compiler
	Optimization
	OS
	Expectation
	Comment

	gcc-7 x86_64_O3
	CB0
	x86_64 
	GCC-7
	O3
	Linux
	Should Pass
	 

	26.442
	CC0
	x86_64
	Visual-C++ 14.10
	None
	Win32
	should Fail
	Fixed-point code

	FLC_Test1A
	CB0
	x86_64 
	GCC-7
	O3
	Linux
	Should Fail
	Code change

	FLC_Test2
	CB0
	x86_64 
	GCC-7
	O3
	Linux
	Should Fail
	Decoder code change

	icc16_x86_32_O2source
	CB0
	x86_32 
	ICC-16
	O2, source
	Linux
	Should Pass
	 

	icc16_x86_32_O3source
	CB0
	x86_32 
	ICC-16
	O3, source
	Linux
	Should Pass
	 

	icc16_x86_32_O2Fast
	CB0
	x86_32 
	ICC-16
	O2, fast
	Linux
	Should Fail
	 Unsafe optimization

	icc19_x86_64_avx2Fast
	CB0
	x86_64 
	ICC-19
	O2, fast
	Linux
	Should Fail
	 Unsafe optimization

	icc19_x86_64_O3source
	CB0
	x86_64 
	ICC-19
	O3 source, high precision
	Linux
	Should Pass
	 

	aarch64_ggc-8_Ofast
	CB0
	ARMv8a
	GCC-8
	O fast
	Linux
	Should Fail
	Unsafe optimization

	gcc-7_x86_0fast
	CB0
	x86_64 
	GCC-7
	Ofast
	Linux
	Should Fail
	Unsafe optimization

	Clang-6_mavx2_O3
	CB0
	x86_64 
	Clang-6
	O3
	Linux
	Should Pass
	

	26.443_d20
	D20
	x86_64 
	Visual-C++ 9.0
	
	Win32
	Should Fail
	Obsolete code version


4. Encoder and Decoder Test Results
Results have been presented in S4-190922 [. They are repeated in this contribution for consistency.
Table 3 shows the results of the verification. The Nbe Fail represents the number of files that failed the encoder or decoder test. For the decoder test there are 2728 files tested. For the encoder test there are 907 files tested.
 Table 3: Verification results for decoder and encoder test 
	
	
	
	Decoder SNR
	Encoder MLD

	Name
	Expectation
	Results
	Verdict
	Nbe Fail
	Verdict
	Nbe Fail

	gcc-7 x86 64 -O3
	Should Pass
	Pass
	Pass
	0
	Pass
	0

	26.442
	Should Fail
	Fail
	Fail
	2247
	Fail
	677

	FLC_Test1A
	Should Fail
	Fail
	Fail
	343
	Fail
	53

	FLC_Test2
	Should Fail
	Fail
	Fail
	180
	Pass
	0

	icc16_x86_32_02source
	Should Pass
	Pass
	Pass
	0
	Pass
	0

	icc16_x86_32_03source
	Should Pass
	Fail
	Pass
	0
	Fail
	34

	icc16_x86_32_02Fast
	Should Fail
	Fail
	Fail
	179
	Fail
	406

	icc19_x86_64_avx2Fast
	Should Fail
	Fail
	Fail
	5
	Fail
	393

	icc19_x86_64_03source
	Should Pass
	Pass
	Pass
	0
	Pass
	0

	aarch64_ggc-8_Ofast
	Should Fail
	Fail
	Fail
	72
	Fail
	696

	gcc-7_x86_0fast
	Should Fail
	Fail
	Fail
	76
	Fail
	696

	clang_6_mavx2_O3
	Should Pass
	Pass
	Pass
	0
	Pass
	0

	26.443_d20
	Should Fail
	Fail
	Fail
	107
	Fail
	39


5. Encoder and Decoder Test Analysis

The first conclusion is that all the implementations that should fail are correctly flagged as failed, while all the implementations that were expected to pass, passed the tests (except the icc16_x86_32_O3source). 
The icc16_x86_32_O3source implementation failed the encoder test due to the 5.9kbps mode. In the encoder stage the 5.9 mode uses many sine and cosine computations that require higher precision. The icc16_x86_32_O3source was not compiled with enough accuracy, and some distortion in the waveform could be seen, and thus the results of the test rightly flagged it as non-conformant. Note that icc16_x86_64_O2 source was compiled with high precision and the implementation is passing all the tests.
Consequently, from these results one can conclude that the tests correctly discriminate the implementations with code change
or unsafe optimizations.

6. MOS LQO Test Results
The MOS-LQO test was performed for all reference and verification implementations, resulting in 24 implementations that were assessed with POLQA™ version 2.4 to generate the MOS-LQO differences. Each implementation results in ~62 hours of PCM data that undergo P.863 analysis, totalling in ~62 days of audio data for the 11 reference and 13 verification implementations.
Note that the executable attached to TS 26.443 is an additional reference implementation for the MOS-LQO test, whereas the TS 26.443 executable as part of the verification implementations only served the purpose to have an internal cross-check of the correctness of the method.

Table 4 shows the results of the verification results.
Table 4: Verification Results for the MOS-LQO Test (all contents)
	
	
	
	Decoder
	Encoder
	MOS-LQO Test

	Name
	Expectation
	Results
	Verdict
	Verdict
	Verdict
	Avg. Fail
	95% Fail
	99% Fail
	Max Fail

	gcc-7 x86 64 -O3
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	26.442
	
	
	Fail
	Fail
	
	0 (BE)
	0 (BE)
	0 (BE)
	0 (BE)

	FLC_Test1A
	Should Fail
	Fail
	Fail
	Fail
	Fail
	9
	9
	9
	6

	FLC_Test2
	Should Fail
	Fail
	Fail
	Pass
	Fail
	3
	4
	2
	1

	icc16_x86_32_02source
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	icc16_x86_32_03source
	Should Pass
	Fail
	Pass
	Fail
	Pass
	0
	0
	0
	0

	icc16_x86_32_02Fast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	1
	1
	0
	0

	icc19_x86_64_avx2Fast
	Should Fail
	Fail
	Fail
	Fail
	Pass
	0
	0
	0
	0

	icc19_x86_64_03source
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	aarch64_ggc-8_Ofast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	6
	4
	7
	0

	gcc-7_x86_0fast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	3
	0
	2
	1

	clang_6_mavx2_O3
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	26.443_d20
	Should Fail
	Fail
	Fail
	Fail
	Pass
	0
	0
	0
	0


The first conclusion is that all the implementations that should fail are correctly flagged as failed (except the 26.443_d20 and the icc19_x86_64_avx2Fast), while all the implementations that were expected to pass, passed the tests.

The old 26.443 version 13.2.0 passed the interoperability test to the fixed-point, while it could be expected that obsoleted code may lead to a failure. The reason for the obsoletion was the observation of a potential float/fixed interoperability issue for certain extreme signals, which was detected in the HR HQ mode in case a PVQ MDCT-vector needs to be split into 7 subvectors. While the interoperability test was not able to confirm the interoperability issue, the encoder and decoder tests were correctly able to flag the algorithmic difference.
Version icc19_x86_64_avx2Fast passed the interoperability test to the fixed-point, although the compiler was allowed to perform some faster math operations. The underlying math library was however still the high precision math library (see [11] for the respective CFLAGS), and thus the differences to the version without the fast switch are not as high as one might have expected.

The two implementations unexpectedly passing the MOS-LQO test however fail the encoder and decoder tests, thus the final result is that they fail.

Consequently, from these results one can conclude that the tests correctly discriminate the implementations with code change
or unsafe optimizations.
At the last meeting there was the question raised whether mixed/music items should be included in the interoperability test. However, POLQA is only recommended for speech items but previous results indicated that MOS-LQO differences still provide valuable insights. There were two options going forward presented:
1. Continue using the same scripts used in AHEVS-366 that include music items in some experiments.
2. Remove the experiments using music items.
The sources preferred Option 1 to also cover mixed/music conformance. A further data analysis on the processed items was conducted, removing all mixed/music experiments from the derivation of thresholds and the analysis of the verification implementations. The results are presented in Table 5.
Table 5: Verification Results for the MOS-LQO Test (excluding mixed/music experiments)
	
	
	
	Decoder
	Encoder
	MOS-LQO Test

	Name
	Expectation
	Results
	Verdict
	Verdict
	Verdict
	Avg. Fail
	95% Fail
	99% Fail
	Max Fail

	gcc-7 x86 64 -O3
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	26.442
	
	
	Fail
	Fail
	
	0 (BE)
	0 (BE)
	0 (BE)
	0 (BE)

	FLC_Test1A
	Should Fail
	Fail
	Fail
	Fail
	Fail
	9
	9
	9
	8

	FLC_Test2
	Should Fail
	Fail
	Fail
	Pass
	Fail
	5
	4
	3
	1

	icc16_x86_32_02source
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	icc16_x86_32_03source
	Should Pass
	Fail
	Pass
	Fail
	Pass
	0
	0
	0
	0

	icc16_x86_32_02Fast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	1
	2
	0
	0

	icc19_x86_64_avx2Fast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	1
	0
	0
	2

	icc19_x86_64_03source
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	aarch64_ggc-8_Ofast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	2
	2
	2
	0

	gcc-7_x86_0fast
	Should Fail
	Fail
	Fail
	Fail
	Fail
	0
	0
	0
	1

	clang_6_mavx2_O3
	Should Pass
	Pass
	Pass
	Pass
	Pass
	0
	0
	0
	0

	26.443_d20
	Should Fail
	Fail
	Fail
	Fail
	Pass
	0
	0
	0
	0


The results provide the same verdict with mixed/music experiments included or not, there are however differences in the number of failures. The gcc-7_x86_0fast and aarch64_ggc-8_Ofast implementations show fewer fails, while the FLC_Test1A and FLC_Test2 implementations show one or two fails more.
The sources therefore conclude that because both variants, with and without mixed/music, would provide the same verdict, the variant that provides wider coverage should be selected. Thus, the sources propose to include the mixed/music experiments in the MOS-LQO test.

7. Proposal
Based on the above results it is proposed to agree on the Non-Bit-exact conformance process and agree the draft CR to 26.444 in AHEVS-480.
8. References
[1] S4-181225 “WID on EVS for floating-point conformance for Non bit-exact”, Intel, Apple, Fraunhofer IIS, Huawei Technologies Co. Ltd, Orange, Oct. 2019
[2] 3GPP TR 26.843 “Study on Non Bit-Exact Conformance Criteria and Tools for Floating-Point EVS Codec”
[3] S4-180718 “MOS-LQO verification for EVS 14.2”, Intel, Fraunhofer IIS, Apple, July 2018.

[4] S4-190404 “EVS Float conformance”, Intel, Fraunhofer IIS, Apple, April 2019

[5] AHEVS-464 “EVS FCNBE using MLD profiles”. Fraunhofer IIS, Intel, May 2019
[6] AHEVS-462 “EVS Float conformance”, Intel, Fraunhofer IIS, Apple, May 2019
[7] AHEVS-366 “Floating-point verification, rev1”, Fraunhofer IIS, December 2014

[8] 3GPP TS 26.444 “Codec for Enhanced Voice Services (EVS); Test sequences”, v14.0.0

[9] 3GPP TS 26.406 “General audio codec audio processing functions; Enhanced aacPlus general audio codec; Conformance testing”, v13.0.0
[10] 3GPP TS 26.274 “Audio codec processing functions; Extended Adaptive Multi-Rate - Wideband (AMR-WB+) speech codec; Conformance testing”, v13.0.0
[11] S4-190922 “EVS Float Conformance Verification”, Fraunhofer IIS, Intel, Apple, August 2019

- 1/6 -

