TSG SA4 EVS SWG Ad-hoc telco
AHEVS-435
March 9th , 2018

Source:
Intel, Fraunhofer IIS, Apple
Title:
Additional Considerations
Document for:
Discussion and Agreement
Agenda Item:
3
1 Introduction
At the last SA4 meeting in Fukuoka, there were several discussions related to interoperability issue as well as the use of POLQA for EVS float conformance. This contribution addresses these two points.
2. Conformance principles
First the sources would like to reiterate some important points for EVS conformance.

EVS coder has two standard compliant implementations, a fixed-point implementation in TS 26.442 and a floating-point implementation in TS 26.443. Both implementations are fully compatible and interoperable to each other.
Conformance of voice coder implementation should be conceptually done in the same way, regardless if the implementation is either fixed-point or floating-point. The conformance process is:

· 3GPP provides a reference code with a set of test vectors (input wav files, output bitstreams and output wav files)

· Companies typically create an implementation based on the reference code. Conformance is verified via a conformance process which processes the test vectors and compares bitstreams and output vectors using a “comparison” tool and “matching” criteria.
3. Interoperability consideration
In TR 26.843 there is question about debugging responsibility when an audio artefact is observed.
Based on principles explain in clause 2, the way of debugging should be the same regardless if a floating-point or fixed-point implementation is used. If implementation A encoder with implementation B decoder yields artefact then each implementation should be check against the reference code.
Interoperability issues will be minimized with an increase of test coverage. With the use of MOS-LQO verification process (database and methodology) the test coverage significantly increases compare to only using the test vector in 26.444. Hence, this method is quite appropriate for testing interoperability between fixed-point and floating-point implementations.

In current proposal the use of MOS-LQO verification allows to strengthen the interoperability testing as the code is evaluated not only with 3GPP float reference but also 3GPP fixed reference.

3.2 Proposed update to TR 26.843

8.1
Description
With implementations being conformant to either TS 26.442 or TS 26. 443, there are 2 interoperability concern that comes to mind.

The first concern is about interoperability between fixed-point and floating-point implementations. This is addressed by the standard as both implementations are tested and released together. Furthermore, interoperability relevant code parts including all bit-stream operations, are included as fixed-point code into 26.443.
The second one arises from the belief that by not using bit-exact criteria two floating-point implementations could be non-interoperable. This is discuss in the next clause.

8.2
Interoperability Testing
Clauses 5.2 and 5.3 describe signal-based methods and perceptual-based methods for a conformance procedure for evaluating various EVS floating-point implementations.

· In Clause 5.2, the decoder implementation on any given compiler is tested against the test vectors from 26.444 (corresponding to e.g., floating point 32-bit MSVC implementation). The decoder conformance procedure is depicted as in Figure 24.

· In Clause 5.3, the encoder-decoder chain is proposed to be evaluated based on a delta P.OLQA measure using the ITU-T P.863.1 tool. The encoder-decoder conformance procedure is depicted in Figure 25.

[image: image1.emf]EVS encoder (bitstream)Reference FloatDecoderFloat decoder (compiler 1)Float decoder (compiler 2)Float decoder (compiler N):Conformance testing ofCompiler #1 decoder implementation:

Figure 24. Decoder conformance, where each of the decoder implementations on different compilers (e.g., N different compilers) verified based on the test vectors from 26.444.

 [image: image2.emf]EVS FX encoderEVS FX decoderFloat encoder (compiler 1):Conformance testing ofCompiler #1 implementationInputPCMDecodedPCMFloat decoder (compiler 1)EVS FX encoderFloat decoder (compiler 1)ABCFloat encoder (compiler 1)EVS FX decoderD

[image: image3.emf]EVS FX encoderEVS FX decoderFloat encoder (compiler 2):Conformance testing ofCompiler #2 implementationInputPCMDecodedPCMFloat decoder (compiler 2)EVS FX encoderFloat decoder (compiler 2)ABCFloat encoder (compiler 2)EVS FX decoderD

Figure 25. Encoder-decoder conformance, where each of the encoder/decoder implementations on different compilers (e.g., shown here for 2 compilers) verified against the FX implementation.

The conformance procedure shown in Figure 24 evaluates only Float decoder implementations. The procedure is similar to what is typically followed in MPEG standards for evaluating decoder conformance, that serves streaming or playback type of applications (or decoder-only FL implementations in conversational applications).

For end-to-end conversational application, the conformance procedure shown in Figure 25 evaluates Encoder/Decoder chain for the three combinations, i.e., 1) FL_Enc <-> FL_Dec, 2) FX_Enc <-> FL_Dec, and 3) FL_Enc <-> FX_dec against FX_Enc <-> FX_Dec.
By combining both conformance procedures (figure 24 & 25), the CUT float implementation is evaluated against both FX reference implementation and the FL reference implementation, minimizing potential interoperability issues. Furthermore, using both methods the coverage of test vectors is significantly increased, providing more confidence to the float conformance even if bit-exactness criteria is not used.
The conformance test of an implementation (fixed or float) should be done against the reference code and not against another custom implementation. If two implementations are conformant then they should not have interoperability issues

An interoperability issue could arise when a packet from FL compiler #1 implementation is decoded by compiler #2 implementation and there is a strong artefact observed at the UE #2, is it the issue with FL Encoder with compiler #1 or the issue with FL Decoder with compiler #2?
It should be noted that this scenario is not limited to FL compiler implementations but could also arise with fixed-point implementation. In case of artefact occurs, both implementation should be tested against the reference code (Fixed or Float) for the particular test sequence exhibiting the scenario. If the bitstream from implementation #1 decoded using the reference code yield no artefact, the problem is with the implementation #2. However if the decoded output of the reference code has the same artefact, the problem is with implementation #1.

4. Use of POLQA
4.1 Considerations

At the last meeting there were discussions about the usefulness of POLQA for float conformance. Some code changes examples were proposed showing files where POLQA difference was small while the difference was clearly audible [3]. However when the examples were implemented and tested using the MOS-LQO verification proposed in TR 26.843, it was shown that POLQA scores show significant difference.

The efficiency of any conformance process relies on the test vectors coverage. Using the MOS-LQO verification currently proposed in TR 26.843 is providing significantly increased test coverage (more than 62 hours of processed audio signals) relevant for voice communications.

The source analysed the various results produce with 10 EVS implementations, to assess possible conformance criteria using MOS-LO verification methodology.

4.2 Criteria proposal for POLQA

The following six implementations among the one tested in chapter 6 of TR 26.843 were used to derive criteria based on MOS _LQO (C80 Visual Studio, C90 Visual Studio, Atom Opt_None, Atom Opt_quality, Xeon_gcc_o2 and Mac_OS_o2). These platforms were chosen because the compiler option were set to none or normal level and no code change was performed.

The criteria are based on the average, 95% and 99% of the MOS-LQO difference for the three use cases (A-B, A-C, A-D). The maximum values among the six implementations is proposed as conformance criteria. It is proposed to have a criteria for all conditions combined as well as for each bandwidth condition. The proposed value for criteria are presented in Table 1.
Table 1: Proposed criteria for MOS_LQO difference
	All
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.07

	A-C
	0.002
	0.03
	0.04

	A-D
	0.002
	0.05
	0.08

	NB
	Average
	95%
	99%

	A-B
	0.009
	0.07
	0.08

	A-C
	0.002
	0.03
	0.04

	A-D
	0.011
	0.07
	0.09

	WB
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.08

	A-C
	0.002
	0.03
	0.04

	A-D
	0.002
	0.05
	0.09

	WBIO
	Average
	95%
	99%

	A-B
	0.002
	0.03
	0.06

	A-C
	0.002
	0.02
	0.03

	A-D
	0.002
	0.03
	0.04

	SWB
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.06

	A-C
	0.003
	0.03
	0.04

	A-D
	0.002
	0.05
	0.07

	FB
	Average
	95%
	99%

	A-B
	0.006
	0.04
	0.07

	A-C
	0.005
	0.04
	0.05

	A-D
	0.005
	0.04
	0.06

Using these threshold, four implementations using aggressive compiler option (Mac_Ofastv3, Opt_Agg) or code change (AHEVS429_E, AHEVS429_D) were tested for conformance. Each time a value is above the corresponding threshold in table 1, the box is coloured in red with highlighted text.
Table 2: Results of MOS-LQO verification for 4 non conformant implementations
	All
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	0.0021
	0.0395
	0.0632
	0.0025
	0.029
	0.0429
	0.0009
	0.0373
	0.0637

	AHEVS429_D
	0.0106
	0.0668
	0.095
	0.0109
	0.0631
	0.095
	0.0009
	0.0373
	0.0637

	Mac_Ofast_v3
	0.0022
	0.0482
	0.0781
	0.0026
	0.0269
	0.037
	0.0015
	0.0453
	0.0704

	Opt_Agg
	0.0356
	0.2817
	0.4069
	0.0217
	0.1428
	0.31942
	0.04438
	0.2859
	0.40732

	NB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	0.0081
	0.0542
	0.0739
	0.0008
	0.0136
	0.033
	0.0105
	0.0606
	0.0742

	AHEVS429_D
	0.0081
	0.0542
	0.0739
	0.0008
	0.0136
	0.033
	0.0105
	0.0606
	0.0742

	Mac_Ofast_v3
	0.0069
	0.0565
	0.0911
	0.0004
	0.0249
	0.0351
	0.0084
	0.0575
	0.0805

	Opt_Agg
	0.0519
	0.2732
	0.3991
	0.0015
	0.0153
	0.0347
	0.0513
	0.2593
	0.3897

	WB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	-0.0027
	0.0301
	0.0533
	-0.0004
	0.0167
	0.0327
	-0.0009
	0.0351
	0.0592

	AHEVS429_D
	-0.0027
	0.0301
	0.0533
	-0.0004
	0.0167
	0.0327
	-0.0009
	0.0351
	0.0592

	Mac_Ofast_v3
	0.001
	0.0633
	0.079
	0.0039
	0.0269
	0.0411
	0.0034
	0.0592
	0.0748

	Opt_Agg
	0.0476
	0.3129
	0.3968
	0.0076
	0.0562
	0.16376
	0.0524
	0.3191
	0.4026

	WBIO
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	 -0.0024
	0.0155
	0.0375
	 -0.0001
	0.0011
	0.0237
	-0.0023
	0.0103
	0.0226

	AHEVS429_D
	 -0.0024
	0.0155
	0.0375
	 -0.0001
	0.0011
	0.0237
	-0.0023
	0.0103
	0.0226

	Mac_Ofast_v3
	0.0004
	0.0302
	0.0397
	0.0019
	0.0185
	0.0346
	-0.0015
	0.0236
	0.0393

	Opt_Agg
	0.0023
	0.0161
	0.02683
	0.00001
	0.0096
	0.0251
	-0.0022
	0.0097
	0.0198

	SWB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	0.0056
	0.046
	0.067
	0.0086
	0.039
	0.047
	-0.0026
	0.034
	0.059

	AHEVS429_D
	0.0264
	0.087
	0.097
	0.0298
	0.081
	0.127
	-0.0026
	0.034
	0.059

	Mac_Ofast_v3
	0.0018
	0.0388
	0.0766
	0.0024
	0.0242
	0.0351
	-0.0015
	0.0384
	0.0711

	Opt_Agg
	0.0451
	0.3094
	0.4231
	0.0492
	0.2856
	0.3443
	0.0631
	0.3208
	0.4263

	FB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	AHEVS429_E
	0.0060
	0.0377
	0.0595
	0.0048
	0.0318
	0.0400
	0.0041
	0.0354
	0.0597

	AHEVS429_D
	0.0310
	0.0937
	0.1134
	0.0282
	0.0779
	0.1239
	0.0041
	0.0354
	0.0597

	Mac_Ofast_v3
	0.0030
	0.0383
	0.0533
	0.0039
	0.0329
	0.0408
	0.0003
	0.0245
	0.0415

	Opt_Agg
	0.0440
	0.3343
	0.5072
	0.0561
	0.2500
	0.3275
	0.0669
	0.3281
	0.5046

As it can be seen, all four implementations will be flagged as non-conformant using the MOS-LQO verification method and proposed criteria. One can see the number of failed cases change among the four implementation, indicating the severity of code change or aggressiveness of compiler setting.
Based on these results, it can be concluded that MOS_LQO verification with proposed database, condition and criteria has sufficient discriminative power to identify the non-conformant implementations that have been provided as corner cases. Consequently the MOS-LQO verification should be used in EVS float conformance.
4.3 Proposed update to TR 26.843
5.3.3.4. Thresholds and Criteria
For conformance it is proposed to have threshold on the Average, 95% and 99% of the MOS-LQO differences for the three scenario (A-B, A-C, A-D). Thresholds are defined when all conditions are combined, as well as for each set of bandwidth condition. Table x summarizes the various thresholds.
These thresholds have been obtained by using the good implementations tested in Clause 6:
· EVS C80 Reference code

· EVS C90 Reference code

· EVS C80 code compiled for Atom 32 bits platform using icc without optimization

· EVS C80 code compiled for Atom 32 bits platform using icc with normal optimization level

· EVS C80 code compiled for Mac_OS 64bits using clang with –o2 optimization
· EVS C90 code compiled for Xeon 64 bits platform using gcc with –o2 optimization
 For each case the maximum score difference among the six implementation was used.
An implementation will pass the MOS-LQO verification if all the average, 95 percentile and 99 percentile MOS-LQO differences are below these thresholds for all conditions.
Table x: Proposed criteria for MOS_LQO difference

	All
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.07

	A-C
	0.002
	0.03
	0.04

	A-D
	0.002
	0.05
	0.08

	NB
	Average
	95%
	99%

	A-B
	0.009
	0.07
	0.08

	A-C
	0.002
	0.03
	0.04

	A-D
	0.011
	0.07
	0.09

	WB
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.08

	A-C
	0.002
	0.03
	0.04

	A-D
	0.002
	0.05
	0.09

	WBIO
	Average
	95%
	99%

	A-B
	0.002
	0.03
	0.06

	A-C
	0.002
	0.02
	0.03

	A-D
	0.002
	0.03
	0.04

	SWB
	Average
	95%
	99%

	A-B
	0.002
	0.05
	0.06

	A-C
	0.003
	0.03
	0.04

	A-D
	0.002
	0.05
	0.07

	FB
	Average
	95%
	99%

	A-B
	0.006
	0.04
	0.07

	A-C
	0.005
	0.04
	0.05

	A-D
	0.005
	0.04
	0.06

5. Proposal
It is proposed to include text in clauses 3.2 and 4.3 in the TR 26.843.

6. Reference
[1] 3GPP TR 26.843 “Study on Non Bit-Exact Conformance Criteria and Tools for Floating-Point EVS Codec”

[2] 3GPP TS 26.443 “EVS ANSI-C source code (floating-point)”

[3] AHEVS-429 ”Limitations of Using ITU-T P.863.1 for 3GPP Conformance Testing of EVS Floating Point Implementation”, Qualcomm Incorporated, Ericsson LM, December 2017

[4] AHEVS-427 “FCNBE Discussion points”, Intel, Fraunhofer IIS, Apple, December 2017
7. Annex A

Table with the results for the conformant implementations for the various conditions. For Xeon gcc_o2 some data were not finish computing.
	All
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	0.0008
	0.0344
	0.06078
	0.0011
	0.0197
	0.035
	0.001
	0.0357
	0.0594

	C90
	0.0006
	0.0359
	0.0612
	0.0011
	0.0198
	0.0362
	0.0009
	0.0373
	0.0637

	Opt_None
	0.0006
	0.034
	0.0585
	0.0012
	0.02
	0.0354
	0.0003
	0.0338
	0.0568

	Opt_Quality
	0.0008
	0.0358
	0.0643
	0.001
	0.0178
	0.0352
	0.0012
	0.0344
	0.0745

	Xeon gcc_o2
	
	
	
	
	
	
	
	
	

	Mac_OS_o2
	0.0005
	0.0425
	0.0639
	0.0011
	0.024
	0.0364
	0.0009
	0.0444
	0.0669

	NB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	0.0071
	0.0507
	0.0724
	0.0019
	0.0196
	0.033
	0.0095
	0.05745
	0.0746

	C90
	0.0081
	0.0542
	0.0739
	0.0008
	0.0136
	0.033
	0.0105
	0.0606
	0.0742

	Opt_None
	0.0059
	0.0496
	0.0604
	0.0019
	0.02
	0.0338
	0.0073
	0.0528
	0.0682

	Opt_Quality
	0.0078
	0.0616
	0.0792
	0.001
	0.0131
	0.0327
	0.0106
	0.0651
	0.0812

	Xeon gcc_o2
	0.0081
	0.0542
	0.073
	0.001
	0.013
	0.033
	0.0104
	0.061
	0.075

	Mac_OS_o2
	0.0081
	0.0545
	0.0781
	0.0008
	0.021
	0.0375
	0.0105
	0.0606
	0.0786

	WB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	-0.0008
	0.0375
	0.0615
	-0.0008
	0.014
	0.0312
	0.0006
	0.0385
	0.0544

	C90
	-0.0027
	0.0301
	0.0533
	-0.0004
	0.0167
	0.0327
	-0.0009
	0.0351
	0.0592

	Opt_None
	-0.001
	0.0307
	0.0525
	-0.0006
	0.0139
	0.0314
	-0.0002
	0.0368
	0.0567

	Opt_Quality
	0.00019
	0.032
	0.0468
	-0.0005
	0.0159
	0.0334
	-0.0015
	0.0283
	0.0565

	Xeon gcc_o2
	
	
	
	
	
	
	
	
	

	Mac_OS_o2
	-0.0029
	0.043
	0.0735
	-0.0004
	0.0251
	0.0361
	-0.001
	0.0438
	0.0804

	WBIO
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	-0.0035
	0.0139
	0.0431
	-0.0002
	0.0089
	0.0196
	-0.0037
	0.0055
	0.0227

	C90
	 -0.0024
	0.0155
	0.0375
	 -0.0001
	0.0011
	0.0237
	-0.0023
	0.0103
	0.0226

	Opt_None
	-0.003
	0.0168
	0.0482
	-0.0001
	0.0105
	0.0215
	-0.0028
	0.0079
	0.0232

	Opt_Quality
	-0.0026
	0.0134
	0.0516
	-0.0003
	0.0098
	0.0167
	-0.0023
	0.0099
	0.0209

	Xeon gcc_o2
	-0.0024
	0.015
	0.0375
	-0.0002
	0.011
	0.0251
	-0.0023
	0.0103
	0.0226

	Mac_OS_o2
	-0.0024
	0.0263
	0.0475
	-0.0001
	0.0146
	0.0273
	-0.0023
	0.0235
	0.0354

	SWB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	0.0001
	0.027
	0.05
	0.0022
	0.023
	0.034
	-0.0017
	0.022
	0.046

	C90
	-0.0013
	0.035
	0.048
	0.0019
	0.022
	0.031
	-0.0026
	0.034
	0.06

	Opt_None
	0.0004
	0.029
	0.059
	0.0022
	0.023
	0.034
	-0.0017
	0.032
	0.062

	Opt_Quality
	0.0002
	0.032
	0.047
	0.0019
	0.021
	0.032
	-0.0003
	0.025
	0.047

	Xeon gcc_o2
	-0.0015
	0.036
	0.048
	0.0021
	0.022
	0.03
	-0.0026
	0.034
	0.06

	Mac_OS_o2
	-0.0013
	0.0424
	0.0524
	0.0019
	0.0237
	0.032
	-0.0027
	0.0448
	0.0585

	FB
	A-B
	A-C
	A-D

	
	Average
	95%
	99%
	Average
	95%
	99%
	Average
	95%
	99%

	C80
	0.0047
	0.0341
	0.0569
	0.0032
	0.0302
	0.0379
	0.0038
	0.0294
	0.0525

	C90
	0.0053
	0.0359
	0.0595
	0.0041
	0.0289
	0.0378
	0.0041
	0.0354
	0.0597

	Opt_None
	0.00343
	0.0316
	0.0533
	0.00377
	0.0307
	0.0375
	0.0019
	0.0223
	0.0449

	Opt_Quality
	0.0043
	0.0359
	0.0648
	0.0037
	0.0288
	0.0431
	0.0035
	0.0296
	0.0519

	Xeon gcc_o2
	0.0054
	0.0348
	0.0599
	0.0041
	0.0286
	0.0379
	0.004
	0.0354
	0.0597

	Mac_OS_o2
	0.0053
	0.036
	0.057
	0.0041
	0.0289
	0.0364
	0.0041
	0.039
	0.0586

Page: 1/8

Page: 3/8

