3GPP SA4-EVS SWG Ad-hoc Call #13
AHEVS-159
18th June, 2012, 14:00 CET

Source:
Fraunhofer IIS

Title:
Processing functions for Jitter Buffer Management
Document for:
Discussion & Approval
Agenda Item:
5
Overview

The source identified a few missing pieces to enable having JBM tested for qualification of the EVS codec. Those can be briefly summarized as network simulator issues, and correct cutting of the processed concatenated items, supported by a trace file format to enable cutting and also calculating the objective criteria.
Network Simulator
At the last SA4 meeting in Erlangen a network simulator was proposed [1]. The source wants to express sympathy for the proposal, has however some concerns with the treatment of packets that aggregate frames. It was understood that the proposal tries to solve the issue in a pragmatic way, however this simplification requires additional workarounds in the candidate solutions specifically for EVS (although this would be invalid behaviour in real-world implementations). Therefore a patch set is provided which solves this issue.
The reason for this request is the fact that in the current proposal a packet with aggregated frames is treated as a joint packet for applying the network behaviour, and then stored as two packets with identical headers, which only differ by the payload, i.e. the speech frame. The source does not support this particular piece of the proposal but rather recommends specifying a behaviour that implements the same behaviour with regards to delay, jitter, and loss, but is also understood by VoIP receivers that conform to RFC3550 (RTP).

It is therefore the request of the source to have additional means to differentiate those packets, as a default receiver would drop any but the first of the packets of the normally aggregated packet, and even if the dropping would be disabled, then the recovery of the original order is still guess work without additional information. Treating those two packets as really two distinguishable packets with exactly identical arrival time stamp would be the most natural choice, supported by the source. Just having the RTP sequence number increased (by 1 for each subsequent frame in an aggregated packet) does still attribute a wrong RTP timestamp to the second packet (as this speech frame would then have to be merged with the previous one by whatever means – a rather unknown process in general). Just attributing a different RTP timestamp (increased by the value equivalent to the duration of a speech frame) but identical sequence number to the second packet would at least not have the previous problem, and as such the media time stamp would be correct for all speech frames, but still requires disabling the normal checks done by RTP receivers. Changing both sequence number and RTP timestamp would be, as already explained, the preferred solution, as this implies single speech frame per RTP packet, although the arrival is always bursty with two packets arriving simultaneously, thus the expected speech output is identical to real aggregation.
In addition the source requests a fixed time-scale (e.g. 1000 for milliseconds, or a fixed sample rate for all bandwidths) being used as the RTP timescale to avoid additional parameters for the decoder executable – if this is not agreeable the source strongly requests an additional parameter for the decoder containing the RTP timescale, as otherwise timing relations are unknown.
Cutting / Cue lists
As the expected JBM solutions are to be adaptive to meet the objective criteria, time-warping will be present for all JBM solutions in the tests. This means that the start and end times of the original stimuli have to be recovered from the processed concatenated items, although those now have different lengths, which invalidates the cue lists normally used.
The source therefore proposes a trace file format that is to be generated by all candidate solutions for the JBM tests, to enable recovery of pre-amble, stimuli, and post-amble. A processor can then cut the items by using the PCM files and the trace files as input.

The following is an example of the trace file format, which is a simple text file with comma-separated values (CSV file). An entry is written per 20ms, as all input items are integer multiples of 20ms (which eases cutting, as explained later). The playtime is more fine-granular to allow cutting with higher precision (as the stimuli are not in general surrounded by long silence periods).

	#rtpSeqNo
	rtpTs[ms]
	rcvTime[ms]
	playtime[ms]
	active
	concealed

	-1
	-1
	-1
	0
	0
	1

	-1
	-1
	-1
	20
	0
	1

	-1
	-1
	-1
	40
	0
	1

	-1
	-1
	-1
	60
	0
	1

	-1
	-1
	-1
	80
	0
	1

	-1
	-1
	-1
	100
	0
	1

	-1
	-1
	-1
	120
	0
	1

	0
	0
	100
	140
	1
	0

	1
	20
	130
	160
	1
	0

	2
	40
	150
	178
	1
	0

	3
	60
	165
	198
	0
	0

	-1
	-1
	-1
	218
	0
	1

	5
	100
	200
	238
	1
	0

	-1
	-1
	-1
	258
	1
	1

	6
	120
	270
	278
	1
	0

	7
	140
	290
	298
	1
	0

The above table is the tabular representation of a hypothetic example (i.e. without separators as normally in the text file), which contains several comments how this hypothetic example was created. Note that for simplicity the playtime in the example is in integer ms granularity, the real tool would however support float values for playtime.

The following explanation of the example is per playtime range (marked alternated in grey above):

· 0-120:
Initialization phase, the delay produced by the simulator is played out with the codecs’ idle signal – this needs to be really cut off.

· 140:
1st active speech frame decoded

· 160:
2nd active speech frame

· 178:
3rd active speech frame, slightly time-shrunk by 2ms
· 198:
4th frame, is a SID frame (-> non-active)

· 218:
error concealment for lost 5th frame due to network loss (indicated in delay-and-error-profile); non-active state copied from previous frame, although when looking at the next frame this frame is active, as obvious by the increased sequence number (following next but not known at the current playtime), i.e. this frame was not NO_DATA
· 238:
6th frame with active speech normally arriving

· 258:
buffer empty, therefore a concealment operation is used to stretch the time-line. Active state copied from previous frame

· 278:
7th frame finally there, played out as if nothing happened

· 298:
from 8th frame on everything all right
An additional text-processor for those text files is then used to cut based on the entries in column rtpTs. Entries that correspond to the normal cutting points are searched for and the corresponding playtime values are used instead. In case the packets for the cutting points are lost or within inactive periods the position is interpolated from neighbouring available packets. In the example above the first item would start at rtpTs 0 and playtime 140. In a more realistic case with a long concatenated item of 10s preamble and two 8s stimuli those values could e.g. be 10000, 18000, 26000, … - which could map to 10140, 18122.3, 26130.2, respectively.

Objective Evaluation

It is also envisioned that this format can be directly used for the objective evaluation, i.e. the JICOs and delay CDF can be directly derived from the file, if analysed together with the MTSI delay and error profile, as all information needed is in those two files.

Summary
The source provides a patch for the network simulator and a trace file format to facilitate jitter buffer management operation for the EVS project. It is suggested to accept the patch and this format. The source is willing to provide binaries or scripts that implement the proposal. The network simulator patch is attached for convenience.
References:

[1] S4-120594 – Network Simulator for EVS

Appendix A – Patch for network simulator of [1]:

*** network_simulator.c
Wed Jun 13 16:34:29 2012

--- network_simulator_patched.c
Fri Jun 15 17:11:58 2012

*** 274,291 ****

 for (j=1; j <= num_frm_per_pkt; j++)

 {

 dlprof[vpcount].pkt_ind = i+j;

! dlprof[vpcount].rtp_ts = timestmpseed + (long)(((float) fsamp/8000)* 160);

 if (j == num_frm_per_pkt && delaytemp != -1)

 {

 dlprof[vpcount].arrival_time= ((8000.0/(float)fsamp)*(float)(dlprof[vpcount].rtp_ts)/8.0)+delaytemp;

 for (k=1;k<num_frm_per_pkt;k++)

 {

 dlprof[vpcount-k].arrival_time = dlprof[vpcount].arrival_time;

- dlprof[vpcount-k].rtp_ts = dlprof[vpcount].rtp_ts;

 }

 }

! timestmpseed = dlprof[vpcount].rtp_ts;

 if (delaytemp != -1)

 {

 vpcount++;

--- 274,290 ----

 for (j=1; j <= num_frm_per_pkt; j++)

 {

 dlprof[vpcount].pkt_ind = i+j;

! dlprof[vpcount].rtp_ts = timestmpseed;

 if (j == num_frm_per_pkt && delaytemp != -1)

 {

 dlprof[vpcount].arrival_time= ((8000.0/(float)fsamp)*(float)(dlprof[vpcount].rtp_ts)/8.0)+delaytemp;

 for (k=1;k<num_frm_per_pkt;k++)

 {

 dlprof[vpcount-k].arrival_time = dlprof[vpcount].arrival_time;

 }

 }

! timestmpseed += (long)(((float) fsamp/8000)* 160);

 if (delaytemp != -1)

 {

 vpcount++;

*** 321,327 ****

 framerate = payload_array[idx].frame_rate;

 tmp= (long) ((float)dlprof[i].rtp_ts*((float) 8000/(float) fsamp)/(float)160);

! dlprof[i].rtp_sn = prev_sn + (int)((float) (tmp - prev_ts)/(float)(num_frm_per_pkt));

 prev_ts = tmp;

--- 320,326 ----

 framerate = payload_array[idx].frame_rate;

 tmp= (long) ((float)dlprof[i].rtp_ts*((float) 8000/(float) fsamp)/(float)160);

! dlprof[i].rtp_sn = prev_sn;

 prev_ts = tmp;

*** 335,346 ****

 dtx_val = 0;

 continue;

 }

! if(firstAftND == 1 &&(dlprof[i].rtp_sn == prev_sn))

! {

! dlprof[i].rtp_sn = dlprof[i].rtp_sn + 1;

! }

! firstAftND=0;

! prev_sn = dlprof[i].rtp_sn;

 fwrite (&size, sizeof (long), 1, fp_output); /* Write the Packet Size including the RTP Header size */

--- 334,340 ----

 dtx_val = 0;

 continue;

 }

! ++prev_sn;

 fwrite (&size, sizeof (long), 1, fp_output); /* Write the Packet Size including the RTP Header size */

Page: 1/5

Page: 2/5

