

	
3GPP TSG-SA WG4 Video SWG Telco #126	S4aV230129
Online, 16 January 2024

Source:	Interdigital Oy
Title:	[FS_ARMRQoE] Editor’s note on accuracy level computation
Spec:	3GPP TR 26.812 v1.0.0
Agenda item:	3.6
Document for:	Discussion and Agreement
Contact:	Stephane Onno <stephane dot onno at interdigital dot com>

1. Introduction
The pose error and time error metrics for the predicted pose for rendering are defined in the technical report. In the measurement procedure in clause 6.3.5.3, the XR application may use the status information returned with the pose estimation from the XR runtime to compute an accuracy level of that pose estimation.
A Note following the measurement procedure details how to get the status information related to the pose estimation with the Kronos OpenXR API.
An editor’s note in clause 6.3.5.3 about the computation of the accuracy level using the XrViewStateFlags is FFS.
The contribution provides an example of accuracy level computation using the XrViewStateFlags to address this editor’s note.
1.1 Kronos OpenXR specification on xrLocateViews
The XR application queries for a predicted pose on steps 5 and 15 in the measurement procedure. Those can be achieved by calling the function xrLocateViews with the Kronos OpenXR API.
In the Kronos OpenXR documentation (https://registry.khronos.org/OpenXR/specs/1.0/man/html/xrLocateViews.html), the xrLocateViews function is defined as:
	// Provided by XR_VERSION_1_0
XrResult xrLocateViews(
 XrSession 	session,
 const XrViewLocateInfo*	viewLocateInfo,
 XrViewState* 	viewState,
 uint32_t 		viewCapacityInput,
 uint32_t* 	viewCountOutput,
 XrView* 	views);

Parameters Descriptions :
	· session is a handle to the provided XrSession.
· viewLocateInfo is a pointer to a valid XrViewLocateInfo structure.
· viewState is the output structure with the viewer state information.
· viewCapacityInput is an input parameter which specifies the capacity of the views array. The required capacity must be same as defined by the corresponding XrViewConfigurationType.
· viewCountOutput is an output parameter which identifies the valid count of views.
· views is an array of XrView.
· See Buffer Size Parameters chapter for a detailed description of retrieving the required views size.

The XrViewState structure contains additional state data.
	typedef struct XrViewState {
 XrStructureType 		type;
 void* 				next;
 XrViewStateFlags 	viewStateFlags;
} XrViewState;

The structure XrViewState contains a field XRViewStateFlags
In XrViewStateFlags field, it contains a bitmask of XrViewStateFlagBits indicating state for all views.
	// Flag bits for XrViewStateFlags
static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_VALID_BIT = 0x00000001;
static const XrViewStateFlags XR_VIEW_STATE_POSITION_VALID_BIT = 0x00000002;
static const XrViewStateFlags XR_VIEW_STATE_ORIENTATION_TRACKED_BIT = 0x00000004;
static const XrViewStateFlags XR_VIEW_STATE_POSITION_TRACKED_BIT = 0x00000008;

The definition of state values returns for views are the following:
	Flag Descriptions
· XR_VIEW_STATE_ORIENTATION_VALID_BIT indicates whether all XrView orientations contain valid data. Applications must not read any of the XrView pose orientation fields if this flag is unset. XR_VIEW_STATE_ORIENTATION_TRACKED_BIT should generally remain set when this bit is set for views on a tracked headset or handheld device.
· XR_VIEW_STATE_POSITION_VALID_BIT indicates whether all XrView positions contain valid data. Applications must not read any of the XrView::pose position fields if this flag is unset. When a view loses tracking, runtimes should continue to provide valid but untracked view position values that are inferred or last-known, so long as it’s still meaningful for the application to render content using that position, clearing XR_VIEW_STATE_POSITION_TRACKED_BIT until tracking is recovered.
· XR_VIEW_STATE_ORIENTATION_TRACKED_BIT indicates whether all XrView orientations represent an actively tracked orientation. This bit should generally remain set when XR_VIEW_STATE_ORIENTATION_VALID_BIT is set for views on a tracked headset or handheld device.
· XR_VIEW_STATE_POSITION_TRACKED_BIT indicates whether all XrView positions represent an actively tracked position. When a view loses tracking, runtimes should continue to provide valid but untracked view position values that are inferred or last-known, e.g. based on neck model updates, inertial dead reckoning, or a last-known position, so long as it’s still meaningful for the application to render content using that position.

1.2 Proposed example of accuracy level computation
As described above, the above XrViewStateFlags in the XrViewState are flags that provide information on the validity and the tracking of position and orientation.
The following XrViewStateFlags may be used to compute an accuracy level on the predicted/estimated pose:
-	XR_VIEW_STATE_ORIENTATION_VALID_BIT
-	XR_VIEW_STATE_POSITION_VALID_BIT
-	XR_VIEW_STATE_POSITION_TRACKED_BIT
-	XR_VIEW_STATE_ORIENTATION_TRACKED_BIT
The four XrViewStateFlags flags together can distinguish 24 different states. However, these many different states are not needed to provide the necessary information regarding validity and tracking of pose information.
In the following table, the XrViewStateFlags flags are used to deduce accuracy level. The Accuracy level corresponds to the value given to the combination of the flags.

	XR_VIEW_STATE_
POSITION_VALID
_BIT
	XR_VIEW_STATE_
ORIENTATION_VALID
_BIT
	XR_VIEW_STATE_
POSITION_TRACKE
_BIT
	XR_VIEW_STATE_
ORIENTATION_TRACKED
_BIT
	Accuracy level
Values
	Comments

	0
	0
	X
	X
	0
	The position and the orientation are not valid.

	0
	1
	X
	0
	1/8
	Only the orientation is valid but untracked.
The position is not valid.

	0
	1
	X
	1
	2/8
	Only the orientation is valid and tracked.
The position is not valid.

	1
	0
	0
	X
	3/8
	Only the position is valid but untracked.
The orientation is not valid.

	1
	0
	1
	X
	4/8
	Only the position is valid and tracked.
The orientation is not valid.

	1
	1
	0
	0
	5/8
	The position and the orientation are valid but untracked.

	1
	1
	0
	1
	6/8
	The position is valid and untracked.
The orientation is valid and tracked.

	1
	1
	1
	0
	7/8
	The position is valid and tracked.
The orientation is valid and untracked.

	1
	1
	1
	1
	1
	The position and the orientation are valid but tracked.

The above given values are indicative, other values could be attributed to allow the four XrViewStateFlags to provide accuracy level information.

2. Reason for Change
[bookmark: _Hlk156227897]We propose an example of accuracy level computation using Kronos OpenXR API to address the editor’s note in clause 6.3.5.3 “the computation of the accuracy level using the XrViewStateFlags is FFS.”

3. Proposal
Based on the above discussion, it is proposed to agree the following changes to 3GPP TR 26.812.

[bookmark: _Hlk61529092]* * * First Change * * * *

[bookmark: _Toc143815963][bookmark: _Toc152695660]6.3.5.3	Measurement procedure
A measurement procedure for the scenario of cloud-based rendering is shown in Figure 5.2.3-1. The XR Runtime and the XR Application may be on a same device such as a UE, or on difference devices such as an AR glasses (which hosts the XR Runtime) and a UE (which hosts the XR Application). The steps are as follows:
1)	The XR Application estimates the round-trip time (RTT) between the XR application and the Edge Application Server (EAS).
2)	The XR Application queries for the next display time. This (and step 3) can be achieved by calling the xrWaitFrame function in OpenXR.
3)	The XR Runtime replies with the next display time.
4)	The XR application predicts a display time – an initial prediction – and the use of initial is because a second prediction/estimation will be made later. This predicted display time is called T2.predicted1.
[bookmark: _Hlk156205845]5)	The XR application queries for a predicted pose at the initial predicted display time T2.predicted1. Calling the function xrLocateViews in OpenXR can achieve this step and step 7.
6)	The XR Runtime predicts the pose, and the prediction occurs at time T1.
7)	The XR Runtime returns with the predicted pose (P.predicted1) including status flags information.
7bis)	The XR application computes the accuracy level (AL.predicted1) of the predicted pose based on the status flags information returned with that pose.
8)	The XR application sends the predicted pose (P.predicted1) and the associated initial predicted display time (T2.predicted1) to the EAS.
9)	The EAS renders for the predicted pose (P.predicted1), and compresses the rendered frame.
10)	The EAS returns the rendered frame along with the initial predicted display time (T2.predicted1) to the XR Application.
11)	The XR Application sends the rendered frame to the XR Runtine, e.g., via swapchain. This can be achieved by calling the xrReleaseSwapchainImage function in OpenXR. The XR Application passes the display time used for the rendering the frame, and this can be achieved by calling the xrEndFrame function in OpenXR.
12)	The XR Application queries for the predicted display time. This is intended to get a more accurate prediction of the display time than the one in step 4, because there is less time to predict into the future at this moment.
13)	The XR Runtime returns an updated prediction of the display time (T2.predicted2).
14)	The XR Runtime performs reprojection for pose correction. The actual display play time is called T2.actual.
15)	The XR Application queries for the pose associated with the updated prediction of the display time (T2.predicted2). This can be achieved by calling the xrLocateViews function in OpenXR.
16)	The XR Runtime does pose estimation.
17)	The XR Runtime returns a pose estimate (P.predicted2) including status flags information.
18)	The XR Application computes the aggregated accuracy level (AL.predicted2) using the status information returned with the pose (P.predicted2) from the step 17 and the accuracy level (AL.predicted1) from the step 7bis. Then the XR Application computes a pose error estimate (P.predicted1 – P.predicte2) and a time error estimate(T2.predicted1 – T2.predicted2) according to the aggregated accuracy level (AL.predicted2).

Figure 6.3.5.3-1: The procedure for measuring the pose error and time error in pose prediction
Note that two queries are used to predict the display time of a same frame. The first query occurs in step 2, and the query result is used to determine a target display time for the rendering process in step 4. The second query occurs much closer to the actual display time, as shown in steps 12-13, and thus provides higher accuracy. This is shown in Figure 6.3.5.3-2.

Figure 6.3.5.3-2: The use of a second prediction (T2.predicted2) of the display time for better accuracy
Note: to compute the accuracy level in step 7bis and 18 with the Khronos OpenXR API [22], the xrLocateViews function returns the status information related to the predicted/estimated pose in the XrViewState structure. XrViewStateFlags in the XrViewState are flags that give information validity and tracking of position and orientation.
The following XrViewStateFlags may be used to compute an accuracy level on the predicted/estimated pose:
-	XR_VIEW_STATE_ORIENTATION_VALID_BIT
-	XR_VIEW_STATE_POSITION_VALID_BIT
-	XR_VIEW_STATE_POSITION_TRACKED_BIT
-	XR_VIEW_STATE_ORIENTATION_TRACKED_BIT

Editor’s note: the computation of the accuracy level using the XrViewStateFlags is FFS.
An example to compute the accuracy level is provided in table 6.3.5.3-1. The XrViewStateFlags flags may be used to deduce accuracy level that corresponds to the value given to the combination of the flags.
Table 6.3.5.3-1 example of accuracy level computation
	XR_VIEW_STATE_
POSITION_VALID
_BIT
	XR_VIEW_STATE_
ORIENTATION_VALID
_BIT
	XR_VIEW_STATE_
POSITION_TRACKE
_BIT
	XR_VIEW_STATE_
ORIENTATION_TRACKED
_BIT
	Accuracy level

	0
	0
	X
	X
	0

	0
	1
	X
	0
	1/8

	0
	1
	X
	1
	2/8

	1
	0
	0
	X
	3/8

	1
	0
	1
	X
	4/8

	1
	1
	0
	0
	5/8

	1
	1
	0
	1
	6/8

	1
	1
	1
	0
	7/8

	1
	1
	1
	1
	1

NOTE: The given values are indicative, other values could be attributed to allow the four XrViewStateFlags to provide accuracy level information.

* * * End of Changes * * * *

image1.wmf
X

R

R

u

n

t

i

m

e

X

R

A

p

p

l

i

c

a

t

i

o

n

E

d

e

g

e

A

p

p

l

i

c

a

t

i

o

n

S

e

r

v

e

r

1

:

P

r

e

d

i

c

t

R

T

T

2

:

q

u

e

r

y

f

o

r

t

h

e

n

e

x

t

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

3

:

r

e

t

u

r

n

t

h

e

n

e

x

t

d

i

p

l

a

y

t

i

m

e

4

:

p

r

e

d

i

c

t

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

b

a

s

e

d

o

n

R

T

T

a

n

d

f

r

a

m

e

r

a

t

e

5

:

q

u

e

r

y

f

o

r

a

p

r

e

d

i

c

t

e

d

p

o

s

e

a

t

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

6

:

p

o

s

e

p

r

e

d

i

c

t

i

o

n

,

c

o

m

p

l

e

t

e

d

a

t

(

T

1

)

7

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

7

b

i

s

:

C

o

m

p

u

t

e

a

c

c

u

r

a

c

y

l

e

v

e

l

A

L

.

p

r

e

d

i

c

t

e

d

1

8

:

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

9

:

r

e

n

d

e

r

f

o

r

p

r

e

d

i

c

t

e

d

p

o

s

e

(

P

.

p

r

e

d

i

c

t

e

d

1

)

1

0

:

r

e

t

u

r

n

r

e

n

d

e

r

e

d

f

r

a

m

e

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

1

1

:

s

e

n

d

r

e

n

d

e

r

e

d

f

r

a

m

e

t

o

s

w

a

p

c

h

a

i

n

,

e

.

g

.

,

v

i

a

x

r

R

e

l

e

a

s

e

S

w

a

p

c

h

a

i

n

I

m

a

g

e

(

)

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

E

n

d

F

r

a

m

e

(

)

1

2

:

q

u

e

r

y

f

o

r

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

1

3

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

2

)

1

4

:

r

e

p

r

o

j

e

c

t

i

o

n

1

5

:

q

u

e

r

y

f

o

r

t

h

e

p

o

s

e

a

t

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

T

2

.

p

r

e

d

i

c

t

e

d

2

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

1

6

:

p

o

s

e

e

s

t

i

m

a

t

i

o

n

1

7

:

r

e

t

u

r

n

a

p

o

s

e

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

2

)

1

8

:

C

o

m

p

u

t

e

t

i

m

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

-

T

2

.

p

r

e

d

i

c

t

e

d

2

)

,

C

o

m

p

u

t

e

p

o

s

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

1

-

P

.

p

r

e

d

i

c

t

e

d

2

)

a

c

c

o

r

d

i

n

g

t

o

t

h

e

a

g

g

r

e

g

a

t

e

d

a

c

c

u

r

a

c

y

l

e

v

e

l

A

L

.

p

r

e

d

i

c

t

e

d

2

a

c

t

u

a

l

d

i

s

p

l

a

y

t

i

m

e

i

s

T

2

.

a

c

t

u

a

l

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

8

.

2

oleObject1.bin

image2.emf
Now

Next predicted display time

1/FrameRate

Time

RTT

1/FrameRate

T2.predicted1

Now

display time

Time

T2.predicted2 display time

display time

At time of step 4:

At time of step 13:

Microsoft_Visio_Drawing.vsdx
Now
Next predicted display time
1/FrameRate
Time
RTT
1/FrameRate
T2.predicted1
Now
display time
Time
T2.predicted2
display time
display time
At time of step 4:
At time of step 13:

