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1	Introduction
[bookmark: _Hlk150231671]This contribution updates our previous bit incremental transmission scenario in the evaluation PD adding a description of the evaluation scripts and providing evaluation results.
2	Proposed changes

===================================== Change 1 =====================================
10.6	Bit-incremental transmission and deployment of AI/ML models
10.6.1	Motivation and use case relevance
Even after compression, AI//ML models can have large sizes, which may lead to high transmission times and thus a significant startup delay for inference. For example, consider the “object recognition in image and video” use case considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO with EfficietNet backbone, may have 50-100M parameters. Another example is the transformer models, which are very successful models adopted primarily in speech and vision applications. Their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models may take a significant amount of time to download; therefore, high startup latency is expected in the UE. However, in many time-critical use cases, it may be preferable to start performing inference rapidly, even if that occurs at the expense of the task accuracy. 
In addition to compression, model sizes can be reduced further by training models with lower precision, e.g., FP16 instead of FP32, or quantizing the trained models to obtain a lower precision version. In this way, a low-precision model can be sent to the client to reduce the startup time. However, there is typically a trade-off between the model accuracy and precision of the model weights. Therefore, a model update mechanism may be necessary to update a low-precision model to a higher precision to improve the model accuracy, if needed. This scenario describes such a bit-incremental transmission scenario for AI/ML model delivery.
It should be noted that the described technique is not specific to any of the scenario categories listed in the current PD. For evaluation purposes, the technique is applied to a binary image classification use case.
10.6.2	Description of the scenario
The scenario consists of two UEs and a server. The server has different versions of a model with different bit width in its local storage, e.g., two versions of the model described in Section 2.4: (i) a low-precision version of type 16-bit integer, and (ii) a full-precision version of type 32-bit integer. The UEs send request to the server to access the CNN model introduced in Section 2.4. UE1 requests a bit-incremental transmission of the full-precision model, while UE2 requests direct transmission of the full-precision model, which is considered as the anchor. In the anchor, the server sends the full-precision model directly to the UE2, while for UE1, the server sends the low-precision version of the model first, and then a model update is sent to the UE comprising the difference between the full-precision and low-precision versions. 
Transmission of the models is done in the compressed form to further save bandwidth. Compression here refers to any technique used to reduce the size of the model such as sparsification, pruning, quantization, entropy coding, etc. The compressed full/low precision models and the compressed model update all are passed through an entropy coder for further (lossless) compression. In the presented scenario, ISO/IEC 15938-17, namely the Neural Network Compression (NNC) standard is used to carry out compression. However, the proposed scenario is not tied any particular compression tool and can be realized with model compression algorithms available in other ML frameworks such as Pytorch.
10.6.3	Supporting companies and 3GPP members
· Nokia Corporation
· Fraunhofer HHI
10.6.4	Anchor AI/ML DNN model(s) for the scenario
For demonstration purposes, three different DNN models are evaluated in this scenario. The models are all pretrained on ImageNet data. The models are: VGG16, ResNet18, and MobileNet_v2. The VGG16 is evaluated with Chest X-ray 2017 dataset for a binary classification task, and ResNet18 and MobileNet_v2 are evaluated with PASCAL VOC dataset for a classification task with 20 different classes. Details of the datasets are provided in Section 10.6.8. All three models are In this scenario, one possible CNN model that may be used for the experiment is a VGG16 pre-trained on ImageNet and loaded from Pytorch Model Zoo [1]. as the feature extractor, followed by two additional fully connected layers. 
The VGG16 model is modified to match the task, i.e., binary classification, by adding two fully connected layers. The feature extraction part of the model consists of five layers as shown in Figure 1.
NOTE: Other models may be used by proponents of the evaluation of this scenario.
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Figure 1: Feature extractor part (VGG16) of the model used in this scenario. The light green part of each cube demonstrates the convolution layer, and the dark green part of the cube shows the ReLu layer. The brown cube determines the MaxPool layer.
Dimensions of each layer of the feature extractor is shown in Table 1. It should be noted that the original VGG16 model loaded from Pytorch model zoo consists of three fully connected layers after the five convolution layers. However, since we build our code based on the NNC standard’s code, we used two fully connected layers instead of three as in the original VGG16 model. The model contains in total more than 138M parameters and its file size is 527.8 MB. 
Table 1: Dimensions of each convolutional layer (in_channel, out_channel, kernel_height,kernel_width) of the feature extractor part of the model.
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For the other two evaluated models (ResNet18 and MobileNet_v2), the only modification is the change of the output size of their fully connected layers to match the number of objects in the dataset.
It is expected that the proposed technique provides benefit for all model architectures. As described in clause 10.6.8, larger and mMore recent models (e.g. models with ResNet backbone) can be considered used by cross-checkers for evaluation subject to time constraints. Larger models can show the benefit better as the savings in terms of inference start-up latency and bandwidth will be greater.
10.6.5	Testbed architecture and anchors
The architecture considered for the scenario is shown in the Figure 2. For UE1 (left), the server first sends the low-precision version of the model () to the UE at time . The UE starts deploying the model in the task at hand upon receiving the model at time . Later the server sends a model update  comprising the difference between the full-precision model () and the low-precision model. For UE2 (right), the server directly sends the full-precision model at time . The UE starts deploying it after it received the model completely at time .
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Figure 2: Architecture of the scenario.
It should be noted that, in one variant of this scenario, the server may have both the lower-bit precision, e.g., 16-bit integer and the higher bit-precision, e.g., 32-bit integer versions of the requested model at hand. In another variant of the scenario, as in our implementation, the server may quantize the original (floating point) model into 16-bit and 32-bit integer models and then start sending them to the UEs. We followed this approach and quantized the 32-bit float model into a 16-bit and a 32-bit integer model, respectively, since we don’t have access to ready-to-use integer models with different bit widths,
10.6.6	Test configuration factors, constraints and settings
See section 10.6.9.
10.6.7	Feasibility/performance evaluation metrics and requirements
In the scenario, two alternatives for model transfer from the server and deployment in the client are considered:
1. Transmitting the original full-precision model. This setting is considered as the anchor.
2. Transmitting first a low-precision model and then transmitting a model update, which is added to the low-precision model to reconstruct the full-precision model in the client.
Considering these two alternatives, the following metrics are considered when comparing the two approaches:
· Original taskModel accuracy: Accuracyies of the original uncompressed high/low precision model in the serverdecoded and reconstructed model
· In case the model is encoded (entropy coded) in the sender for further compression : 
· Accuracies of the decoded high/low precision models in the client
· In case of model update, this is the aAccuracy of the model obtained after the decoded model update is added to the decoded low-precision model.
NOTE: If the model is not encoded (entropy coded) in the server, accuracies of the compressed (quantized) high/low precision models at the server and client will be the same.
· Start-up latency: The time in seconds it takes for the client to start performing inference using the model transmitted from the server. This is the sum of the encoding time, decoding time and reconstruction time.
· Model size: Size of the model transmitted from the server to the client. In case the model is encoded in the sender, this will be the size of the compressed bitstream.
10.6.8	Test dataset(s) and scripts for the scenario
Two datasets were used in this scenario: (i) The Chest X-ray 2017 images dataset, (ii) PASCAL VOC 2012 dataset. which isBoth datasets are  publicly available.
 and can be The Chest X-ray 2017 dataset can be fetched from [2]. The dataset is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). The dataset is often used for detection of pneumonia based on neural networks and . The dataset contains two classes: Normal and Pneumonia. There are in total 5,856 JPEG images in the dataset and total size of the dataset is 1.15 GB. The dataset is divided into the following splits:
· Train: 5,216
· Validation: 320
· Test: 320
We adopt half of the train data set (2,620 samples) as training data for retraining the model introduced in Section 2.4. Both UEs and the server have access to the same test data with 320 samples and evaluate the original and decoded models using this dataset.
PASCAL VOC 2012 dataset is publicly available in [3] and contains 20 object categories including vehicle, household, animals, etc. Each image in this dataset has pixel-level segmentation annotations, bounding box annotations, and object class annotations. This dataset has been widely used as a benchmark for object detection, semantic segmentation, and classification tasks. The dataset contains 6924 training image and a test set containing 2307 images. We adopt the whole train dataset for retraining the ImageNet pretrained models and the whole test set for test purposes.
Further datasets may be considered for evaluation subject to time constraints.The scenario consists of six major steps as follows:
1. Loading model and data
2. Quantizing the model to two different integer bitwidths; one low-bit precision, e.g. 8 bit, and one high-bit precision, e.g. 16-bit.
3. Encode the quantized model
a. compute the time it takes to encode each quantized model,
b. compute the size of the bitstream generated for each quantized model,
4. Decode the bitstream
a. compute the time it takes to decode each bitstream
5. Reconstruct the decoded bitstream, i.e., convert the decoded quantized model to float32
a. compute the time it takes to reconstruct the decoded bitstream.
6. Calculate the evaluation metrics as defined in the previous clause.
General configuration
The script is run using a shell script ‘run_bitInc.sh’ where the input parameters are given by the user. In the current evaluation, VGG16 was tested using the dataset Chest X-Ray 2017 and ResNet18 and MobileNet-v2 were tested using PASCAL VOC. Scripts to run each of these combinations are provided in ‘run_bitInc.sh’. The cross-checkers only need to comment out a desired combination and provide the desired inputs values. The figure below shows an example configuration to run the scenario with ResNet18 as the model and PASCAL VOC as the dataset. The precision of the low-precision and high-precision integer models are set to 4 and 16, respectively.
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It is important to note here that any model architecture in the Pytorch model zoo could be used in this implementation. These models are:
['alexnet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', ‘resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'inception_v3', 'googlenet', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'mobilenet_v2', 'mnasnet0_5', 'mnasnet1_0']

However, each model might require a structural modification to match the dataset since all models were pre-trained using ImageNet dataset which has 100 classes. To use a model with another dataset with different number of outputs (e.g., Chest X-ray with 2 classes), one needs to modify the last fully connected layer such that the number of outputs generated by the model matches the number of targets in the dataset. To achive this, one only needs to define a new transformation in the ‘transforms.py’ script under ‘framework/mpeg_applications/utils/’. Currently, two transformations are defined: the first one modifies the structure of the VGG16 pretrained on ImageNet to match Chest X-ray. Particularly, a new classification layer is defined for VGG16 which consists of two fully connected layers, where the last fully connected layer has only two outputs, as seen below.
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The second transformation is defined for the ResNet and MobileNet architectures to use them with the PASCAL VOC dataset, where the number of outputs of the last fully connected layer is modified to match the number of targets in PASCAL VOC dataset, i.e., 20.
[image: ]
The evaluation framework could be used with any other dataset. For that, one needs to define a new python script in ‘framework/mpeg_applications/datasets/’ with all required functions to define data loaders, train/test/validation splits, train/test/validation loaders, etc. Currently, this folder contains scripts for PASCAL VOC, Chest X-Ray, Cifar100, DCase and ImageNet datasets. However, only PASCAL VOC and Chest X-Ray were tested and validated.
Evaluation workflow
In first step, the model is imported the data is loaded. This is done using the function call shown below. The function returns a single model mdl of type float32 and a dictionary containing its parameters mdl_params.
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The loaded model is then re-trained using the training data to check its performance for the task at hand.
[image: ]
Then, a copy of the retrained model is quantized into the two different precisions set by the user: low_bit_precision, and high_bit_precision using the function approx(). The output of the quantization step is a dictionary approx_data_quant, which contains the quantized parameters together with some approximation variables to be used during the encoding step. This process is shown in the following figure.
[image: ]
In the next step, the quantized model is encoded by calling the encode() function. The output bitstream is saved on the hard drive and later fetched by the decoder. The time it takes to encode each quantized model and the size of the generated bitstream are saved.
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After the encoding is done, the bitstream is received by the UE and decoding is done by calling the decode() function as shown in the following figure. The decoding time is also computed as part of the process.
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The decoded bitstream contains the quantized model. The final step is to reconstruct this quantized model to convert it to a float32 model and then calculate its performance. Reconstruction is done using the rec() function. If the reconstructed bitstream is associated to the model update, it is added to the reconstructed low-bit precision model. Finally, the performance of the resulting model is calculated using the function test_model(). The process is shown in the following figure.
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10.6.9	Detailed test conditions
The inputs to the model are the DNN architecture, the path to the dataset, the quantization method used for quantizing the float models (in case the input model is not integer), and the optimization parameters used for retraining of the models, e.g., batch size, learning rate, number of processors to be used for running the experiments. The outputs are the bitstreams of the compressed model and the measured metrics introduced in Sec. 10.6.7.
It is important to note that the metrics introduced in Sec. 2.7 are not tied to any compression tools. However, we adopted NNC since it provides the tools (e.g. encoding, bitstream generation) required to compute these metrics.
Each float model is first converted into integer models using uniform quantization. Then, the quantized model is encoded using DeepCABAC [43], and the generated bitstream is saved into the memory and sent to the UEs. In each UE, the received bitstream is first decoded and reconstructed using the NNC decoder and then adopted for the task at hand.
10.6.10	Interoperability considerations for the scenario
It is expected that the model data is downloaded, possibly using HTTP.
10.6.11	External performance data
None.
10.6.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.6.13	Additional information
None.
10.6.14	Results
Note: These results have not yet been cross checked.
Example results with three different combinations of dataset and model are given below:
	
	Dataset
	Model
	Precision
	Seed
	Model Accuracy (%)
	Start-up Latency (s)
	Bitstream Size (MB)

	High-Precision Model
	Chest X-ray
	VGG16
	16
	451
	73.07
	22.32
	31.70

	Low-Precision Model
	
	
	8
	
	71.79
	12.78
	14.66

	Model Update*
	
	
	16
	
	73.07
	1.59
	0.48

	High-Precision Model
	PASCAL VOC
	ResNet18
	16
	721
	46.03
	15.32
	20.47

	Low-Precision Model
	
	
	8
	
	45.77
	8.38
	9.11

	Model Update*
	
	
	16
	
	46.16
	1.71
	0.67

	High-Precision Model
	PASCAL VOC
	MobileNet_v2
	16
	9472
	44.91
	4.19
	4.43

	Low-Precision Model
	
	
	8
	
	36.98
	2.78
	2.10

	Model Update*
	
	
	16
	
	44.43
	1.09
	0.44


* This is the accuracy obtained after the reconstructed model update is added to the low-precision model
10.6.154	References for the scenario
[1]https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16
[2] Chest X-ray 2017 images dataset, https://data.mendeley.com/datasets/rscbjbr9sj/2
[3] PASCAL VOC Dataset, http://host.robots.ox.ac.uk/pascal/VOC/
[43] Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinč, T., Neumann, D., Nguyen, T., Schwarz, H., Wiegand, T., Marpe, D., Samek, W. (2020). DeepCABAC: A universal compression algorithm for deep neural networks. IEEE Journal of Selected Topics in Signal Processing, 14(4), 700-714.
================================= End of Change 1 ===================================

  Contact: Serhan Gül, Gazi Illahi, Saba Ahsan, Igor Curcio, Nokia Technologies, Finland. Emails: ífirstname.lastnameý@nokia.com 


image1.png
Layer 4

Layer 3

Layer 2

Layer 1




image2.png
W

§

3

W

Time

t+tey

Time

t+ty

t+ty,

UE1




image3.png
PASCAL_DATASET_PATH="/data/datasets/PASCAL/"
CHEST_DATASET_PATH="/data/datasets/chest_xray/chest_xray_v3/"

CUDA_VISIBLE_DEVICES=1 python3 ./BitIncTransmission.py
--dataset_id="pascal_voc"
--dataset_path=$PASCAL_DATASET_PATH
--model_arch=resnet18

--low_bit_precision=4

--high_precision=16

--seed=451

P
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def model_transform_vgglé(original_model):

original_model.avgpool = nn.Sequential(
nn.BatchNorm2d(512, momentum=0.01, eps=le-3)

original_model.classifier = nn.Sequential(
nn.Linear(512 * 4 * 4, 256),
nn.ReLU(True),
nn.Linear(256, 2)

return original_model
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def model_transform_pascal(original model):

if original_model._class_._name_ == 'Reshet’:
classifier_in = original_model.fc.weight.shape[1]
original_model.fc = nn.Linear(classifier_in, 26)

elif original model._class_._name_ == ‘MobileNetva':
classifier_in = original_model.classifier[1].weight.shape[1]
original_model.classifier[1] = nn.Linear(classifier_in, 26)

return original_model
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# Import ImageNet pre-trained float32 model and load the data to be used for retrain/test of the model
mdl, mdl_params = BIT.create_model_instances(model_arch=model_arch,

dataset_id=dataset_id,

dataset_path=dataset_path,

1r=lr,

batch_size=batch_size,

seed=seed,

num_workers=num_workers

)
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# Retrain the imported pre-trained float32 model using the training data
retrained_model, _ = mdl.train_model(orig_param_data['parameters'], acc_return=True)
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for i, id in enumerate(Models["id"]):

# Quantization step: float32 model --> (i) low_bit_precision, (i) high_bit_precision
# model update --> high_bit_precision
approx_data_quant = approx(

Models["approx_info_list"][i].approx_info,

Models[ 'models_info'][i],

Models["approx_data_list"][i]
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start_time = time.time()

# encode the quantized models and model update
bitstream = coder.encode(enc_info, Models['models_info'][i], approx_data_quant, dec_approx_param_list[i], None)

# calculate the time it takes to encode the quantized models and model update
enc_time = time.time() - start_time

# calculate the size of the encoded models and model update
bs_size = len(bitstream)
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start_time = time.time()

hls_bytes = {}

with open(bs_filename, "rb") as _file:
bitstream = bytearray(_file.read())

# decode the bitstream
dec_approx_data = coder.decode(bitstream, dec_model_info, None, None, hls_bytes, dec_approx_param_list[i], update_base_param=True)

# calculate the time it takes to decode the bitstream
dec_time = time.time() - start_time
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start_time = time.time()

# reconstruct the decoded model to convert it to float32
approximator.rec(dec_approx_data, dec_model_info)

# calculate the time it takes to reconstruct the decoded bitstream
rec_time = time.time() - start_time

for param in list( Models['models_info'][i]['parameter_dimensions'] ):
if param not in list( dec_approx_data['parameters'] ):

dec_approx_data[ 'parameters'][param] = np.zeros( Models['models_info'][i]['parameter_dimensions'][param], dtype=np.float32 )

Models["recon_params"].append(dec_approx_data[ 'parameters'])

if id == "model_update":
# add the decoded quantized
state_dict_sum = OrderedDict()
for module_name in Models['recon_params'][@]:
if module_name in dec_approx_data['parameters']:
state_dict_sum[module_name] = torch.tensor(dec_approx_data[ 'parameters'][module_name]) + Models['recon_params'][@][module_name]
else:
state_dict_sum[module_name] = Models["models_params"][@][module_name]
rec_acc = mdl_list[1].test_model(state_dict_sum)
else:
rec_acc = mdl_list[i].test_model(Models['recon_params'][i])




