Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk54879034]3GPP TSG WG SA4 Meeting #125	 S4aV230063
Gothenburg, SE, 21 – 25 August 2023	

Source: 	Nokia Corporation[footnoteRef:2], Fraunhofer HHI [2: Contact: Serhan Gül, Gazi Illahi, Saba Ahsan, Igor Curcio, Nokia Technologies. Emails: ífirstname.lastnameý@nokia.com]

Title: 	[FS_AI4Media] Description for bit-incremental transmission scenario
Document for	Agreement
Agenda item: 	9.7
Introduction
In SA4 #124, a new scenario description on bit-incremental transmission and deployment of AI/ML models was added to the PD. This use case describes a scenario where a model is first downloaded at a low-precision and later updated to a higher/full-precision version with a model update. This enables faster deployment of the initial model (and thus fast startup of inference) as well as potential bandwidth savings.
In this document, we describe the details of the scenario according to the template provided in the PD.
Bit-incremental transmission and deployment of AI/ML models
Motivation and use case relevance
Even after compression, AI//ML models can have large sizes, which may lead to high transmission times and thus a significant startup delay for inference. For example, consider the “object recognition in image and video” use case considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO with EfficietNet backbone, may have 50-100M parameters. Another example is the transformer models, which are very successful models adopted primarily in speech and vision applications. Their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models may take a significant amount of time to download; therefore, high startup latency is expected in the UE. However, in many time-critical use cases, it may be preferable to start performing inference rapidly, even if that occurs at the expense of the task accuracy.
In addition to compression, model sizes can be reduced further by training models with lower precision, e.g., FP16 instead of FP32, or quantizing the trained models to obtain a lower precision version. In this way, a low-precision model can be sent to the client to reduce the startup time. However, there is typically a trade-off between the model accuracy and precision of the model weights. Therefore, a model update mechanism may be necessary to update a low-precision model to a higher precision to improve the model accuracy, if needed. This scenario describes such a bit-incremental transmission scenario for AI/ML model delivery.
It should be noted that the described technique is not specific to any of the scenario categories listed in the current PD. For evaluation purposes, the technique is applied to a binary image classification use case.
Description of the scenario
The scenario consists of two UEs and a server. The server has different versions of a model with different bit width in its local storage, e.g., two versions of the model described in Section 2.4: (i) a low-precision version of type 16-bit integer, and (ii) a full-precision version of type 32-bit integer. The UEs send request to the server to access the CNN model introduced in Section 2.4. UE1 requests a bit-incremental transmission of the full-precision model, while UE2 requests direct transmission of the full-precision model, which is considered as the anchor. In the anchor, the server sends the full-precision model directly to the UE2, while for UE1, the server sends the low-precision version of the model first, and then a model update is sent to the UE comprising the difference between the full-precision and low-precision versions. Transmission of the models is done in the compressed form to further save bandwidth. The full/low precision models and the model update all are passed through an entropy coder to generate the compressed bitstream that is sent to the receiver. The compression is carried out using ISO/IEC 15938-17, namely the Neural Network Compression (NNC) standard. Using a compression algorithm allows us to further demonstrate the usefulness of the scenario in compressed communications.
Supporting companies and 3GPP members
· Nokia Corporation
· Fraunhofer HHI
Anchor AI/ML DNN model(s) for the scenario
In this scenario, the CNN model used for the experiment is a VGG16 pre-trained on ImageNet and loaded from Pytorch Model Zoo [1] as the feature extractor, followed by two additional fully connected layers. The feature extraction part of the model consists of five layers as shown in Figure 1.
[image: A diagram of a diagram of a diagram

Description automatically generated with medium confidence]
Figure 1: Feature extractor part (VGG16) of the model used in this scenario. The light green part of each cube demonstrates the convolution layer, and the dark green part of the cube shows the ReLu layer. The brown cube determines the MaxPool layer.
Dimensions of each layer of the feature extractor is shown in Table 1. It should be noted that the original VGG16 model loaded from Pytorch model zoo consists of three fully connected layers after the five convolution layers. However, since we build our code based on the NNC standard’s code, we used two fully connected layers instead of three as in the original VGG16 model. The model contains in total more than 138M parameters and its file size is 527.8 MB.
Table 1: Dimensions of each layer of the feature extractor part of the model.
	Layer 1
	Conv1
	

	
	Conv2
	

	Layer 2
	Conv1
	

	
	Conv2
	

	Layer 3
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 4
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 5
	Conv1
	

	
	Conv2
	

	
	Conv3
	

Testbed architecture and anchors
The architecture considered for the scenario is shown in the Figure 2. For UE1 (left), the server first sends the low-precision version of the model () to the UE at time . The UE starts deploying the model in the task at hand upon receiving the model at time . Later the server sends a model update comprising the difference between the full-precision model () and the low-precision model. For UE2 (right), the server directly sends the full-precision model at time . The UE starts deploying it after it received the model completely at time .
[image: A comparison of a cell phone

Description automatically generated]
Figure 2: Architecture of the scenario.
It should be noted that, in one variant of this scenario, the server may have both the lower-bit precision, e.g., 16-bit integer and the higher bit-precision, e.g., 32-bit integer versions of the requested model at hand. In another variant of the scenario, as in our implementation, the server may quantize the original (floating point) model into 16-bit and 32-bit integer models and then start sending them to the UEs. We followed this approach and quantized the 32-bit float model into a 16-bit and a 32-bit integer model, respectively, since we don’t have access to ready-to-use integer models with different bit widths,
Test configuration factors, constraints and settings
See section 2.9.
Feasibility/performance evaluation metrics and requirements
In the scenario, two alternatives for model transfer from the server and deployment in the client are considered:
1. Transmitting the original full-precision model. This setting is considered as the anchor.
2. Transmitting first a low-precision model and then transmitting a model update, which is added to the low-precision model to reconstruct the full-precision model in the client.
Considering these two alternatives, the following metrics are considered when comparing the two approaches:
· Original task accuracy: Accuracies of the original high/low precision model in the server
· Reconstruction accuracy:
· Accuracies of the decoded and reconstructed high/low precision models in the client
· Accuracy of the model obtained after the decoded and reconstructed model update is added to the decoded and reconstructed low-precision model
· Start-up latency: The time in seconds it takes for the client to start performing inference using the model
· Bitstream size: Size of the bitstreams generated for each model by the encoder
Test dataset(s) and scripts for the scenario
The use case was implemented based on the NNC standard’s code and many of its functions were used in the implementation.
We followed NNC and adopted Chest X-ray 2017 images dataset, which is publicly available and can be fetched from [2]. The dataset is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). The dataset is often used for detection of pneumonia based on neural networks. The dataset contains two classes: Normal and Pneumonia. There are in total 5,856 JPEG images in the dataset and total size of the dataset is 1.15 GB. The dataset is divided into the following splits:
· Train: 5,216
· Validation: 320
· Test: 320
We adopt half of the train data set (2,620 samples) as training data for retraining the model introduced in Section 2.4. This maps to a single split of the NNC training samples division, i.e., train data A for central server with 2,620 samples. Both UEs and the server all have access to the same test data with 320 samples and evaluate the original and decoded/reconstructed models using this dataset.
Further datasets may be considered for evaluation subject to time constraints.
Detailed test conditions
The inputs to the model are the DNN architecture, the path to the dataset, the quantization method used for quantizing the float models, and the optimization parameters used for retraining of the models, e.g., batch size, learning rate, number of processors to be used for running the experiments. The outputs of the models are the bitstreams of the encoded model and the measured metrics introduced in Sec. 2.7.
It is important to note that the metrics introduced in Sec. 2.7 are not tied to NNC or any other compression tools. However, we adopted NNC since it provides the tools (e.g. encoding, bitstream generation) required to compute these metrics.
Each float model is first converted into integer models using uniform quantization method implemented in the NNC software using the QP values obtained from a base QP value provided as input. Then, the quantized model is encoded using DeepCABAC [3], and the generated bitstream is saved into the memory and sent to the UEs. In each UE, the received bitstream is first decoded and reconstructed using the NNC decoder and then adopted for the task at hand.
 Interoperability considerations for the scenario
It is expected that the model data is downloaded, possibly using HTTP.
 External performance data
None.
 Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
 Additional information
None.
 References for the scenario
[1]https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16
[2] Chest X-ray 2017 images dataset, https://data.mendeley.com/datasets/rscbjbr9sj/2
[3] Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinč, T., Neumann, D., Nguyen, T., Schwarz, H., Wiegand, T., Marpe, D., Samek, W. (2020). DeepCABAC: A universal compression algorithm for deep neural networks. IEEE Journal of Selected Topics in Signal Processing, 14(4), 700-714.
Proposal
We propose to include the above scenario description to the PD and work further to progress on the evaluation of the scenario.

- 4/4 -
image1.png
Layer 4

Layer 3

Layer 2

Layer 1

image2.png
W

§

3

W

Time

t+tey

Time

t+ty

t+ty,

UE1

