[bookmark: bmS4-0-e_(AH)_Video_SW--2023-10-10]3GPPSA4-e (AH) Video SWG post 125e	S4aV230062
October 10th, 2023
[bookmark: _Hlk126577385][bookmark: _Toc504713888]Source: 	     Interdigital Finland Oy
Title: 	[FS_AI4Media] Split inferencing scenario update 
Agenda item: 	3.5
Document for:	Discussion and Agreement 

1 Discussion

This contribution updates our previous split inferencing scenario by generalizing hand gesture detection to objects detection. The motivation to change is primarily due to the lack of annotated video test sets for hand gestures provided with an appropriate license agreement. Second, a reference video test SFU-HW-Objects was already mentioned in 5G-MAG, also referenced in MPEG and proposed by another proponent for object detection, using the retinanet FPN backbone.
We refocus our split inferencing scenario from a specific hand gesture recognition to generic object detection making use of existing 5G-MAG annotated video test sets. 
We propose to evaluate the “Single Shot MultiBox Detector model for object detection” SSD300 model https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/ from Nvidia. 
We include some early results in attachment for an image of an SFU-HW-Objects video (FourPeople_1280x720_60.mp4):
· Timings and intermediate data results from a test where the first inference part runs in a CPU and the second part runs in a GPU (excel attached file)
· Result (label, Box, Score) detection images: Ground truth, GPU anchor, CPU Anchor model, split model.
2 Proposed changes

--------------------------------------------- Begin changes ----------------------------------------------------------------------
10.4	Split inferencing for hand gesture recognitionobject detection with single shot detector
10.4.1	Motivation and use case relevance
Many fields and applications using artificial intelligence need to track and recognize hand gestures to trigger user’s control actions, such as applications based on XR technologies.
For example, an XR application running on AR glasses consists of placing virtual objects in a real physical environment. The detection and recognition of a hand gesture identifies the user's control actions over virtual objects, such as creating, deleting, selecting one or more virtual objects, and placing it within the scene. A field of application is a remote visual assistance where a remote expert guides a person through a physical task by recognizing hand gestures.
AR glasses usually have limited capabilities in term of processing power and battery to run one or several applications requiring high computing power. Offloading a part of an AIML inference from the AR glasses to the network (e.g., Edge) can help reducing the consumption of the resources of the limited device. Besides, an AI/ML service for XR starts with the capture of video content that may contain private real-life scene including that of the user, which should not be directly transmitted for privacy reason. XR application can include a split function service to offload part of XR functions to the Edge such as rendering and scene management. This could be the case for split inferencing as well.
The above points highlight the value of providing split inferencing for recognizing hand gesture, which falls .into object detection family where an object may be a hand gesture, for example.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1 of the technical report permanent document.
10.4.2	Description of the scenario
We emulate this scenario by applying a single shot detector models from the ResNet model family to recognize detect and label a set of hand gesturesobjects, trained from a selected publicly available dataset. The scenario topology is similar to Figure 5.1.1.1-1 where a device with limited capabilities (e.g., AR glasses) captures the video data source including hand gestures, then runs the head part of the model (M0), sends the intermediate data directly or through the proxy device (UE) to a network device running the edge service and the tail part (M1) of the model. The result of the model feeds the XR functions running on the edge device or sent back to the device.
The scenario considers the splitting of a of one or several ResNet models at different layers to measure the performances and data characteristics of split inferencing between two nodes. Split configurations may include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression) as well as serialization/deserialization functions. 
The anchor/baseline of the scenario includes the full model running on the device, the full model running in the network and a split configuration such that most of the computations take place in the network leaving the limited device with a small part of the model to meet privacy preserving requirements The baseline may includes a round-trip communication between the device and the network, even when the full model is executed in the device, as the resulting hand gestureobject detection action may need to be processed in the network.
We evaluate the delivery of the intermediate data characteristics/metrics for different split points with respect to different device capabilities . We may consider different ResNet models and other similar models (ResNeXt for example) to evaluate the impact on characteristics/metrics of processing more or fewer layers and parameters to achieve better results. Delivery latencies will be estimated from the output data size and the different bandwidths of the 5G network.

We provide a test data set, either an excerpt of a public data set comprising a selected set of hand gestures or our own test dataset. 
10.4.3	Supporting companies and 3GPP members
· Interdigital.
10.4.4	Anchor AI/ML DNN model(s) for the scenario
We evaluate evaluate one or single shot detector models several DNN models belonging to the table below. We start with the evaluation of SSD300 model from Nvidia using the PyTorch framework [1]. 
We may consider evaluating other single shot detectors models.
 :
	Model
	Size (MB)
	No. of parameters

	Resnet18SSD300 (ResNet-50)
	89 MB45 MB
	11 million23 million

	Resnet152
	230 MB
	60 million

	Resnext50 _32x4d

	96 MB
	25 million

	Resnext101 32x8d

	339.59
	89 million


Table 10.4.4-1: Anchor model(s) for the scenario

The numbers in the names of a ResNet or a ResNeXt model represent the total number of convolutional layers in each of the architectures (e.g., resnet18 includes 18 convolution layers)
The evaluated models above are inferred using the PyTorch framework [1] [2]. 
10.4.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.


Figure 10.4.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network. 
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.4.1.
The anchor model used is shown in Table 10.4.54-1.
Test network latencies are not considered to ensure scenario reproducibility. Network latencies will be estimated from the output data size and the different bandwidths of the 5G network.
Multiple model split configurations are considered as described in clause 10.2.6.Applying of either the full model or the split model gives the same results and is considered as the baseline anchor regarding optimization and compression.
10.4.6	Test configuration factors, constraints, and settings
Each ResNet model listed above is composed of 8 different aggregated layers resulting in 8 different possible split points where we can compare the results from each model. Additional specific split points may be considered as well. 
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions. 

. 
Figure 10.4.6-1 Testbed configuration

10.4.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network.   
10.4.8	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects dataset [2] is used for this evaluation scenario.
The model used for the scenario is the SSD300 [1]. TFor the evaluation of this split scenario, we use Hagrid dataset (HAnd Gesture Recognition Image Dataset) [3] which provides ResNet-based trained models based on the recognition of 18 classes of gestures. Hagrid provides pre-trained models for several candidate model architectures for testing. 
Resnet18:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet18FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet18FF.pth 
Resnet152:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet152FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet152FF.pth 
Resnext50:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext50FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext50FF.pth 
Resnext101:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext101FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext101FF.pth 
The terms of license are available at: https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/Detection/SSD/LICENSE.md  HYPERLINK "https://github.com/hukenovs/hagrid/blob/master/license/en_us.pdf" https://github.com/hukenovs/hagrid/blob/master/license/en_us.pdf 
Test dataset and scripts to be provided at an ad-hoc meeting in October.
10.4.9	Detailed test conditions
TBD.
10.4.10	Interoperability considerations for the scenario
None.
10.4.11	External performance data
None.
10.4.12	Expected time plan for the scenario completion
Test datasets, scripts and first results in SA4 # 126, November, 2023
10.4.13	Additional information
None.
10.4.14	References for the scenario
[1] Pytorch ResNet SSD300: https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/  
[2] SFU-HW-Objects-v1: http://multimedia.fas.sfu.ca/data/  HYPERLINK "https://pytorch.org/vision/main/models/resnet.html" https://pytorch.org/vision/main/models/resnet.html  
[2] Pytorch ResNeXt  HYPERLINK "https://pytorch.org/vision/main/models/resnext.html" https://pytorch.org/vision/main/models/resnext.html 
[3] Hagrid  HYPERLINK "https://github.com/hukenovs/hagrid/tree/master" https://github.com/hukenovs/hagrid/tree/master


--------------------------------------------- Begin end changes  --------------------------------------------------
3 Proposal

We propose to include update the scenario in section 10.4 of the AIML Evaluation permanent PD V0.2 agreed ( S4aV230045 tdoc) at a July telco.

image1.emf
High-capability deviceLow-capability deviceAnchorModel(Low Capa Device)Model Split configurationTest Split Model 1Test Split Model 2Metrics Logs/ComputationTest MetricsTest Bitstream(Intermediate Data)Test Dataset Pre-processorAI Framework / LibraryTest DatasetTest NetworkInference Output ProcessorInference Output ProcessorNetwork configurationAnchorModel(High Capa Device)Test NetworkInference Output Processor


Microsoft_Visio_Drawing.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor



image2.emf
Head InferenceDelivery estimationTail InferenceOptimization/CompressionSerializationDeserializationDecompression


Microsoft_Visio_Drawing1.vsdx
Head Inference
Delivery estimation
Tail Inference
Optimization/Compression
Serialization
Deserialization
Decompression



