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1	Introduction
During SA4#124 a Revised Study Item Description on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” in S4-231070 was agreed and afterwards approved in by SA#100 in SP-230538.
The revised study item description adds an objective related to feasibility studies and evaluations for study item, for which related content and technologies are documented in this Evaluation Permanent Document and TR 26.8xx.
The related objective is as follows:
· Establish an evaluation framework and use it for the evaluation of scenarios collected for the study. This includes the collection of scenarios based on the use cases identified, and defining a scenario template for the description of scenarios for the evaluation. The evaluation framework to document common testbed architectures and anchors, metrics (e.g. AI/ML task metrics, feasibility/performance metrics), and specific details (such as test configuration and constraints) for each scenario evaluation.
The evaluation framework is designed to accommodate different scenarios for the different use cases for the usage and deployment of AL/ML over 5G networks. A scenario describes the evaluation for a specific use case. Use cases have been identified as part of the SA1 study and a selected subset is documented in TR 26.927.
[bookmark: _GoBack]Editor’s Note: v0.1 of this document is lifted from clause 7 of Permanent Document v0.8 (S4-231011). Highlighted clause references in clause 10 of this document are cross references which need to be revised.
2	General aspects regarding the AI/ML software framework
For AI/ML evaluations, the following data is needed for the agreed scenarios:
· Test material (E.g. media datasets) including labels/annotations
· AI/ML models
· Md5 files for the test metrical and AI/ML models
· Scripts implementing the evaluation pipelines
· Code of (potential) optimization/compression methods
· Dockerfiles (specific version to be tracked)
· Definitions of the metrics for evaluation

For reproducibility on different systems, Dockerfiles implementing the evaluation pipelines should be provided. Dockerfiles, datasets, scripts, and code should be provided in a way that allows building Docker images from scratch. To avoid Docker images getting too large due to datasets, an image per scenario might be considered.

Test material might be referenced on an external server or might be copied to a common local server. Jsonfiles for annotations might be used for online documentation of the available data.

Potential options to host scripts and data are:
· Private GitHub (Imed 1st option and 5G-MAG eventually) no software possible without licensing aspects clarified
· 3GPP GitHub (maybe for scripts, only small files)
· 5G-MAG
· Akamai large file size
· Imed (1st option, https://github.com/ibouazizi/sa4aiml)

Considering licensing aspects, the evaluation software needs to be BSD-3 approved by some members.

Considering reproducibility, cross checks validating the accuracy of results should be performed and Md5 files should be provided. The tolerance for each metric needs to be defined for validation of crosscheck results.

2.1	Currently available scripts / containers
This section lists the currently available scripts and containers that might be used as basis for further development of the AI/ML evaluation framework.
2.1.1	Docker container with scripts and datasets
A docker image container is available to collect all scripts and datasets that will be used as part of the SA4 evaluation framework for FS_AI4Media study.
The docker container is an Ubuntu image with an initial installation of a python environment that includes the key deep learning frameworks: PyTorch and Tensorflow2.
The docker image is currently hosted on a personal server under the following URL:
	https://bouazizi.dev/aiml/aiml_docker_image_05152023.tar.gz 


A more suitable location to host the docker image should be arranged.
The container image is built on an Ubuntu 22.04 base image and can be loaded as follows:
	docker load -i aiml_docker_image_05152023.tar


 The container may leverage underlying GPUs for better inference. If the host machine is equipped with a suitable GPU, then it is recommended to first run the following command:
	apt install -y nvidia-docker2


It is assumed here that the host machine is running an Ubuntu distribution.
To run the container, the following command should be executed:
	docker run -it --gpus all -t aiml aiml_docker_image_05152023


2.1.1.1	Datasets and scripts
The container comes with an image detection dataset, namely the SFU-HW-Objects dataset and its associated annotations. 
The video sequences are encoded in HEVC lossless INTRA-only mode and are available under the videos subfolder. The following table shows the list of video sequences:

	Class 
	Sequence name 
	Width x Height 
	Frame count 
	# Object Classes 

	A 
	Traffic 
	2560x1600 
	150 
	2 

	A 
	PeopleOnStreet 
	2560x1600 
	150 
	4 

	B 
	BQTerrace 
	1920x1080 
	600 
	9 

	B 
	BasketballDrive 
	1920x1080 
	500 
	4 

	B 
	Cactus 
	1920x1080 
	500 
	1 

	B 
	Kimono 
	1920x1080 
	240 
	2 

	B 
	ParkScene 
	1920x1080 
	240 
	4 

	C 
	BQMall 
	832x480 
	600 
	3 

	C 
	BasketballDrill 
	832x480 
	500 
	4 

	C 
	PartyScene 
	832x480 
	500 
	6 

	C 
	RaceHorses 
	832x480 
	300 
	2 

	D 
	BQSquare 
	416x240 
	600 
	7 

	D 
	BasketballPass 
	416x240 
	500 
	4 

	D 
	BlowingBubbles 
	416x240 
	500 
	3 

	D 
	RaceHorses 
	416x240 
	300 
	2 

	E 
	KristenAndSara 
	1280x720 
	600 
	3 

	E 
	Johnny 
	1280x720 
	600 
	3 

	E 
	FourPeople 
	1280x720 
	600 
	4 



The annotations can be found under the ground-truth subfolder. These are one text file per frame of the video, where each file provides the ground truth annotations. 
The annotation files have the following format per line:
	<object_label> <box_topleft_x> <box_topleft_y> <box_width> <box_height>



The predictions are expected to have the following format:
	<object_label> <prediction_confidence> <box_topleft_x> <box_topleft_y> <box_width> <box_height>



The labels that are supported by this dataset are the following:

	Class ID 
	Object 
	Class ID 
	Object 
	Class ID 
	Object 

	0 
	Person 
	17 
	Horse 
	56 
	Chair 

	1 
	Bicycle 
	24 
	Backpack 
	58 
	Potted plant 

	2 
	Car 
	25 
	Umbrella 
	60 
	Dining table 

	5 
	Bus 
	26 
	Handbag 
	63 
	Laptop 

	7 
	Truck 
	27 
	Tie 
	67 
	Cell phone 

	8 
	Boat 
	32 
	Sports ball 
	74 
	Clock 

	13 
	Bench 
	41 
	Cup 
	77 
	Teddy bear 



An inference model that uses a different class ids/labels must have its results converted into the above format prior to evaluation.
The prediction results must be stored as a 1 file per image under the predictions folder.
The dataset is courtesy of the multimedia lab of SFU (SFU, Multimedia Lab, http://multimedia.fas.sfu.ca/data/). The video sequences are MPEG-JVET video sequences.
Currently, the images comes with a few scripts, which are still under development:
· visualize.py: visualizes the annotations with the corresponding video sequence
· infer.py: a demo script that loads a torchivision trained ResNet-50 FPN model and produces predictions for a given video sequence
· map_calc.py: a script that calculates the mAP for the predictions
Please report any bugs/errors to the author.
More datasets for other tasks such as tracking will be added as part of building this evaluation framework.
2.1.2	Scripts for evaluation of compressed AI/ML model transmission
At the Video SWG post 123 online meeting, a first scenario for the evaluation framework for AI/ML was proposed in S4aV230020, which included python code implementing an initial evaluation pipeline for this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). This clause presents a revised version of this software. Key feature of the software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement. In future, the scripts will also be included to a Docker image.
2.1.2.1	Main evaluation process
Figure 2.1.2.1-1 shows the evaluation process schematically in simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).


  scenario  = scenario_factory.get( cfg )
  coder     = coder_factory.get( cfg, scenario )

  anc_model = scenario.get_model()

  results["anc_size"] = get_size( anc_model )
  results["anc_perf"] = scenario.get_performance( anc_model )

  bit_stream  = coder.encode( anc_model )
  rec_model   = coder.decode( bit_stream )

  results["rec_size"] = get_size( bit_stream )
  results["rec_perf"] = scenario.get_performance( rec_model )

  write_to_csv( results )




Figure 2.1.2.1-1: The main evaluation process (simplified pseudo-code)
2.1.2.2	Configuration
The process can be configured as shown in Table 2.1.2.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name           
	Name of the compression method
	C,R

	scenario_name        
	Name of the scenario 
	S,R

	data_set_name        
	Name of the dataset
	S,R

	model_name           
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir              
	Directory to store the csv-file the bitstreams and other output data to
	

	data_dir             
	Directory to model data and datasets  
	S

	batch_size           
	Evaluation batch size (currently ignored)
	S

	workers              
	Number of workers for the data loader
	S

	disable_progress_bar 
	Disable progress bar
	C, S

	eval_compression     
	Compress and evaluate reconstructed model
	R

	eval_anchor             
	Evaluate anchor model
	R

	download_only        
	Only download models and datasets
	


Table 2.1.2.2-1: Configuration parameters

2.1.2.3	Result csv-file
Table 2.1.2.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 2.1.2.2-1 are added.
	Name               
	Description
	Unit

	anc_size           
	Size of the anchor model 
	byte           

	rec_size           
	Size of the bitstream    
	byte           

	compress_ratio  
	rec_size / anc_size      
	-            

	metric_name        
	Name of the metric       
	-                         

	anc_perf           
	Performance of anchor model
	Unit of metric_name 

	rec_perf           
	Performance of reconstructed model
	Unit of metric_name 

	anc_eval_time      
	Evaluation time for anchor model
	seconds        

	rec_eval_time      
	Evaluation time for reconstructed model
	seconds        

	enc_time           
	Encoding time
	seconds        

	dec_time           
	Decoding time
	seconds        


[bookmark: _Ref135006258]Table 2.1.2.3-1: Results written to the csv-file

2.1.2.4	Scenario module interface
The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 2.1.2.4-1. The parameters marked with S in Table 2.1.2.2-1 are forwarded to the init function of the Scenario class within the opts variable.
class Scenario():
  def __init__(self, opts):
    self.metric_name = "MetricOfScenario"
    # Input:
    # - opts: an object with members defining the scenario configuration
    # Should:
    # - define self.metric_name as string denoting the performance metric of 
    #   the scenario, which will be forwarded to the result csv-file
    # - init object from opts

  def get_model(self, pre_trained):
    # Input:
    # - pre_trained a boolean indicating whether to provide the pre-trained model
    # Should download model data and datasets, when not already done
    # Output:
    # - If pre_trained is true, model should be a pre-trained model,
    #   Otherwise, model should be an un-initialized model
    return model

  def download_data_and_models(self):
    # Should download model data and datasets, when not already done

  def get_perf(self, model, partition, enforce_higher_is_better=False):
    # Inputs:
    # - model: the model to get the performance for
    # - partition: the partition of the dataset used for evaluation:
    #   - "test"  The test partition for final performance measurement should be used
    #   - "valid" The validation partition for data-driven methods should be used
    # - enforce_higher_is_better: if true perf should be increasing with increasing 
    #   model performance
    # Outputs:
    # - perf: the performance
    # - infer_time: the inference plus measurement time
    return perf, infer_time




Figure 2.1.2.4-1: Interface required to be implement for new scenarios

2.1.2.5	Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 2.1.2.5-1. The parameters marked with C in Table 2.1.2.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
  def __init__(self, opts ):
    self.__opts = opts
    # Inputs:
    # - opts: an object with members defining the coder configuration:
    #   - opts.file_names["bit"]: the bitstream filename
    #   - opts.file_names["dec"]: the decoded model filename
    #   - opts.scenario: the scenario object
    # Should init the coder object from the opts object

  def encode(self, model ):
    # Inputs:
    # - model: the model to encode
    # Should:
    # - Encode the state_dict() of model to the file given in
    #   self.__opts.file_names["bit"]

  def decode(self, rec_model):
    # Inputs:
    # - rec_model: the model to write the reconstructed parameters to
    # Should:
    # - decode the bitstream file given in self.__opts.file_names["bit"]
    # - store the decoded parameters in the state_dict of rec_model


Figure 2.1.2.5-1: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use:
· the encode function to write optimized model parameters in a raw-byte format to the bitstream 
· the decode function to read them back to rec_model.
2.1.2.6	Currently implemented scenarios and compression methods

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition. 
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.


Table 2.1.2.6-1: Implemented scenarios and compression methods

2.1.2.7	Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.
3	Scenario template
A scenario should provide the following information (aligned with TR 26.955, Annex A):
· Scenario name <give the scenario a catchy name> 
· Motivation for the scenario and its use case relevance:
Why is the scenario relevant for AI/ML multimedia services? Under which of the following use cases does the scenario fall?
· Object Recognition in Image and Video
· Video Quality Enhancement in Streaming
· Crowd-Sourcing Media Capture
· NLP on Speech
· Description of the scenario:
This provides a description of the scenario addressing potentially the relation to the three AI/ML evaluation framework objectives, including AI/ML model split points, AI/ML model checkpoints and updates, and AI/ML model data compression. The description should be more specific than the use case description as provided in TR 26.927. Predominantly the description should allow to develop a baseline solution.
· Supporting companies and 3GPP members: 
a.	This documents the 3GPP members that support this scenario in terms of providing the information, test material, test requirements and the characterization for the tests. For each of the identified necessities, a tick box is created in the template.
b.	Preferably several 3GPP members are included in the support.
c.	Cross-verification is preferably done by the supporters of the scenario
· Anchor AI/ML DNN model(s) for the scenario:
Give the name and details of the trained AI/ML DNN model(s) that will serve for building anchors for this scenario, as well as the data set used for its training. Such trained AI/ML models are not only limited to readily available base AI/ML models, but can also include models developed using transfer learning. There may be more than one candidate anchor AI/ML model for the scenario. As an example, details may include:
a.	Base model used (including links to such base model)	
b.	Framework language used (e.g. TFLite, Pytorch)
c.	Architecture/model type (e.g. CNN, RNN)
d.	Number of layers
e.	Number of parameters
f.	Model size
g.	Details of data set used for training
· Testbed architecture and anchors
Describe and detail the testbed architecture and anchors to be used for the scenario. The architecture and anchors should be based on the ones as defined in clause 5, with modifications matched to the scenario.
· Test configuration factors, constraints and settings:
Describe the test configuration factors, constraints and settings for the scenario. Depending on the nature of the scenario, examples are shown below.
AI/ML model split configuration factors, constraints and settings:
For scenarios considering the feasibility of AI/ML split points, many factors may contribute to the split point decision for the scenario, including those related to device/network status and conditions, as well those related to the AI/ML model used, such as its architecture and complexity. Possible split point decision factors may include:
	Categories
	Parameters
	Details

	Devices Involved
	CPU/GPU
	Device processor capabilities

	
	Battery
	Device battery status

	
	Heat
	Device heating / user health considerations

	Network
	Cellular
	Network selection, bandwidth, latency

	
	Mobility
	Network handover and mobility

	Intermediate Data
	Size
	Data transmission decision, data weights

	
	Type
	Video, Audio/Speech, Text, Binary etc.

	Model Type
	Architecture
	CNN, RNN, GAN, LSTM, etc.1

	User focus
	APP KPI
	Latency Requirement , Service criticality

	
	Data Privacy
	Data transmission allowed or not

	
	Cost of hosting
	Deployment cost at cloud/server

	Data flow
	Topologies2
	Media data source, intermediate data in uplink or downlink


	
1 Studies and experiments about splitting operations shall focus on CNN. Splitting for GAN/RNN/LSTM is FFS.
2 Topologies comprise the next cases:
1. Local source data – local initial inference
2. Local source data – remote initial inference
3. Remote source data – remote initial inference
The scenario may also describe split point constraints, such as limiting split points to those that do not change the model topology and its parameters, splitting only at the layers of the AI/ML model, etc.
Compression or optimization constraints and settings:
For scenarios considering the compression or optimization of the AI/ML model, and/or the intermediate data (where applicable to split inference scenarios), describe the compression or optimization constraints and settings.
· Feasibility/performance evaluation metrics and requirements:
Depending on the scenario, feasibility and performance metrics may be either related to model performance, or to the test bitstream (the nature of which depends on the use case scenario).
List and describe the relevant feasibility/performance evaluation metrics for the scenario. A list of possible metrics is detailed in clause 6.
· Test dataset(s) and scripts for the scenario:
Describe and provide data sets that will be used for the evaluation of this scenario. This should include a description of the license, access procedure, and the dataset annotation format. Same test datasets may be used for similar scenarios falling under the same use case.
Also provide scripts that will be used for performing the evaluation and calculating the metrics.
Further details are provided in clause 6.
· Detailed test conditions:
Provide the detailed test conditions, in particular the descriptions of the input and outputs of the task.
· Interoperability considerations for the scenario:
Interoperability considerations for the scenario may include those related to the delivery considerations for the AI model and other corresponding data (such as intermediate data), including delivery methods, protocols and packetization methods.
a) AI/ML model delivery formats, methods and pipelines: encapsulation formats for AI model data (if necessary), related to the delivery methods and pipelines which may be considered (e.g. download, streaming). This may be related to model update requirements and constraints.
b) AI/ML model optimization methods: methods of model optimization which are not considered under the evaluation methods described under the AI/ML model data compression evaluation defined.
c) Intermediate data compression, delivery formats, methods and pipelines. 
d) Related to a and c above: streaming protocols such as TCP / UDP
e) Related to a and c above: packetization methods such as RTP
· External performance data
References to external performance data that can be added, for example other SDOs, public documents and so on.
· Expected time plan for the scenario completion
· Additional information
4	Prioritizing scenarios
Due to the complexity of this evaluation work, scenarios should be prioritized based on their feasibility within a reasonable time frame. A higher priority should be given to scenarios for which the use case is actual, i.e. already being deployed and used. 
Priority should also be given to scenarios that are based on mobile phones and devices, compared to others based on e.g. automotive or UAVs (drones).
Finally, precedence should be given to evaluating the aspects and solutions that are considered in the SA1 study as documented in TR 22.874. These are:
· AI/ML operation splitting between AI/ML endpoints
· AI/ML model/data distribution and sharing over 5G system
· Distributed/Federated Learning over 5G system

5	Testbed architectures and anchors
Unless proven otherwise, a common set of architectures is assumed for the evaluation framework, irrespective of the scenario. 
The anchor architectures are as follows:
· Running inference completely on the device
· Receiving a compressed video (e.g. from the device), and running inference completely at the network and potentially sharing the inference results with the device.

These anchor architectures are depicted by the following figure:
 [image: ]
Figure 5-1: Anchor architecture
In figure 5-1, the left hand side represents the anchor for running the inference at the device side. The right hand side shows the architecture for the anchor where the inference is run on the network side. The anchor model for running on the device should be derived from the anchor model running on the network. 
The derivation process may include:
· Quantization to match the device’s inference engine, e.g. converting the weights and inputs to fixed point or unsigned integers. 
· Re-training of the converted model to optimize for the inference platform. This is allowed but should be accompanied by results without re-training.
· Conversion to an exchange format such as ONNX
The supported model libraries are PyTorch and Keras/Tensorflow2.
5.1	Split inference intermediate data testbed architecture
A testbed architecture for the evaluation of split inference intermediate data is represented in figure 5.1-1. The anchor model is split into two, split model part 1 and 2, each existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.




Figure 5.1-1 Split inference intermediate data testbed architecture
The testbed architecture includes the following main functional blocks:   
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· AI framework/library: The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.  
· Model split configuration: The configuration of split points for the anchor model which are to be evaluated. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 2.
· Local inferencing: Where the anchor model fully runs on the local node.
· Remote inferencing: Where the anchor model fully runs on the remote node.
· Split inferencing: Where an anchor model is split into two parts, each run on a local and a remote node respectively.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation.
· Test split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: Typically emulating an end-device such as a UE.
· Remote inference node: Typically emulating a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test network: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.

5.2	Model data testbed architecture
A testbed architecture for the evaluation of model data compression is represented in figure 5.2-1. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.


Figure 5.2-1 Model data testbed architecture
The testbed architecture includes the following main functional blocks:
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.
6	Metrics
In the process of AI/ML, no matter on the training set or on the new sample, there is always some difference between the output result of the model and the real value. Model evaluation is a process of using different evaluation metrics to understand the performance of artificial intelligence/machine learning models and its advantages and disadvantages. It is an indispensable part of the model development phases which can help to discover the appropriate model to express the data and evaluate the performance of the selected model.
Different AI/ML work tasks have different evaluation metrics, and the same machine learning task will also have different evaluation metrics, each metric has different emphasis, e.g., classification, regression, ranking, clustering, recommendation, etc.
Given that most scenarios that we’re dealing with in the scope of this study involve computer vision tasks, for model performance metrics, the evaluation framework should reuse existing metrics that are well-established in the research community. There exists different metrics depending on the type of task performed by the model.
Classification model evaluation is the process of assessing and measuring the performance of a machine learning model that has been used for classification tasks. its goal is to divide different images into different categories, to achieve the minimum classification error.
Confusion matrix is a table used in classification tasks that summarizes the performance of a machine learning model on a set of data for which the true values are known. It consists of rows and columns where each row represents the true class of the samples and each column represents the predicted class. The confusion matrix displays the number of samples that are classified correctly (true positives and true negatives) and incorrectly (false positives and false negatives) by the model.
	Confusion Matrix
	Predicted Value

	
	Positive
	Negative

	True Value
	Positive
	True Positives (TP)
	False Negatives (FN)

	
	Negative
	False Positives (FP)
	True Negatives (TN)



True Positives (TP): predict an observation belongs to a class and it actually does belong to that class;
True Negatives (TN): predict an observation does not belong to a class and it actually does not belong to that class;
False Positives (FP): predict an observation belongs to a class but it does not belong to that class;
False Negatives (FN): predict an observation does not belong to a class but it does belong to that class.

For object classification tasks, the following metrics are used to evaluate or measure the performance of a classification model:
1. Accuracy: Accuracy is the simplest metric for evaluating classification performance. It measures the percentage of correctly classified objects out of the total number of objects in the dataset. While accuracy is easy to understand and compute, it can be misleading if the dataset is imbalanced, or the cost of misclassifying different categories is not equal. Accuracy measures how often the classifier makes the correct predictions, it is defined as the ratio between the number of correct predictions and the number of total predictions.

2. Precision: Precision measures the proportion of true positives among all the objects that the model classified as positive. It is useful when the cost of false positives is high, and it is essential to avoid misclassifying objects. Since precision measures the proportion of predicted positive results that are actually positive, it is defined as the fraction of examples (true positives) among all of the examples which were predicted to belong in a certain class (positive).

3. Recall: Recall measures the proportion of true positives among all the objects that belong to the positive class in the dataset. It is useful when the cost of false negatives is high, and it is essential to detect all objects in the dataset. Since recall measures how much the classifier can predict in an actual positive sample, it is defined as the fraction of examples which were predicted to belong to a class with respect to all of the examples that truly belong in the class.

4. F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced view of the model's performance. F1-score is a combination of precision and recall, providing a balanced measure of the model's ability to find all true positive cases and its ability to avoid false positives.

For object detection tasks, the metrics are:
1. Intersection over Union (IoU): IoU is one of the most commonly used metrics for evaluating object detection algorithms. It measures the overlap between the ground truth bounding box and the predicted bounding box. IoU is computed as the ratio of the intersection of the two boxes to the union of the two boxes. A higher IoU score indicates better object detection accuracy.
2. Precision and Recall: Precision measures the fraction of true positives (correctly identified objects) out of all predicted positives (objects identified by the algorithm). Recall measures the fraction of true positives out of all ground truth positives (objects that should have been identified). A high precision score indicates that the algorithm is correctly identifying objects, while a high recall score indicates that the algorithm is not missing any objects.
3. Average Precision (AP): AP is a commonly used metric for evaluating object detection algorithms. It measures the precision at different levels of recall and then averages them. AP provides a single number that summarizes the overall performance of the algorithm. A higher AP score indicates better object detection accuracy.
4. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single number that summarizes the overall performance of the algorithm. A higher F1 score indicates better object detection accuracy.
For object tracking tasks, the metrics are:
1. Intersection over Union (IoU): IoU is also commonly used for evaluating object tracking algorithms. In this case, it measures the overlap between the ground truth bounding box and the predicted bounding box for each frame in the sequence. A higher IoU score indicates better object tracking accuracy.
2. Precision and Recall: Precision and recall can also be used to evaluate object tracking algorithms. In this case, precision measures the fraction of frames where the algorithm correctly identified the object, while recall measures the fraction of frames where the algorithm correctly tracked the object.
3. Mean Average Precision (mAP): mAP is a commonly used metric for evaluating object tracking algorithms. It measures the average precision at different levels of overlap between the ground truth and predicted bounding boxes over the entire sequence. A higher mAP score indicates better object tracking accuracy.
4. Tracking Precision (TP) and Tracking Recall (TR): TP measures the fraction of frames where the predicted bounding box overlaps with the ground truth bounding box by a certain threshold, while TR measures the fraction of ground truth bounding boxes that were successfully tracked. A high TP score indicates that the algorithm is accurately tracking the object, while a high TR score indicates that the algorithm is not losing track of the object.
AI regression model evaluation is the process of measuring the accuracy and performance of a regression model developed using artificial intelligence (AI) techniques. Regression analysis is a statistical method used to predict the relationship between dependent and independent variables. Some of the most commonly used evaluation metrics for regression models are listed as following:
1. Mean Squared Error (MSE): measures the average squared error between the predicted and actual values. It's represented as the average of the squared differences between the predicted and actual values.

2. Root Mean Squared Error (RMSE): the square root of the mean squared error, this metric indicates the deviation of the predicted values from the actual values.

3. Mean Absolute Error (MAE): measures the average absolute difference between the predicted and actual values. This metric is robust to outliers.

4. R-squared (R2): determines how well the regression line fits the data by measuring the proportion of the variance explained by the model.
For other non-object related tasks, examples model performance metrics may include:
· Ranking Model Metrics (MRR, DCG, NDCG)
· Statistical Model Metrics (Correlation)
· Computer Vision Model Metrics (PSNR, SSIM, IoU)
· NLP Model Metrics (Perplexity, BLEU score)
For split inference and model compression related scenarios, other feasibility/performance metrics that should also be considered are:
· Video quality: depending on the scenario, the input or output video quality should also be documented. For example, a video super resolution scenario has to evaluate the quality of the resulting video. For the tasks, the impact of the quality of the input video on the accuracy should also be evaluated.
· Complexity: complexity of the entire process, including video compression and decompression, model compression and decompression (where relevant), and inference process.
· Bitrate: the total bitrate needed for performing the task. This may be 0 for the device anchor. For the network anchor, this includes the video bitrate for the uplink and the bitrate for sharing the task results back to the device. For split inference related scenarios, this should include the intermediate data bitrate.
· Split model size: model size and comparison ratio of the test split model to be delivered (compared to anchor model)
· Intermediate data size or bitrate: a comparison ratio of the intermediate data to be delivered (compared to the data size or bitrate of the relevant data from the anchors)
· Compressed model size: the compression ratio of the compressed model compared to the original reference model.
· Compressed intermediate data ratio: compression ratio of the compressed intermediate data bitstream compared to the original intermediate data bitstream
· Latency: the latency requirements for each scenario must also be taken into account to evaluate the feasibility of the proposed solutions, in particular for split inference scenarios, such as:
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency 
· Other latency metrics
· Encoding/decoding time.
· intermediate data delivery time
· Resources metrics of UE and/or DN:
· Computing power consumption on node
· CPU time
· GPU time  
· Memory usage
· Energy consumption

7	Datasets and scripts
It is recommended to build a docker container that comes with the necessary scripts for downloading the models and datasets, and running the evaluation for each agreed scenario. The Dockerfile should be hosted on a publicly accessible location to all 3GPP members. As example for software management refer to TR 26.955, Annex E.
Potential openly accessible video datasets are:
· YouTubeVIS: Video Instance Segmentation - YouTube-VOS
· SFU-HW-Objects-v1: SFU Multimedia Lab
· TVD: Tencent Video Dataset (TVD) - Tencent Media Lab
For some of the scenarios, companies may be asked to provide a suitable annotated data set to perform the evaluation. This may follow the principle in Annex B of TR 26.955 as well as the test sequence collection in Annex C of TR 26.955.
We offer to collect the data sets, anchors, etc here: https://dash-large-files.akamaized.net/WAVE/3GPP/AIML.
8	AI/ML frameworks and libraries
An AI/ML framework brings a set of services which are interfaces, libraries or tools. They are used to create models, train them and/or to infer input data and deliver a prediction.
Hereafter is a short list:
1. TensorFlow
2. PyTorch
3. Caffe
4. Keras
5. MXNET
6. Darknet

Some frameworks are especially designed for on-device (Mobile Phones) deep Learning, we may present the two main ones:
1. TensorFlow Lite [8]
2. PyTorch Live [9]

Note: Keras is running on top of TensorFlow, and both together provide a high-level APIs to make a more user-friendly framework. For the rest of the document TensorFlow and Keras frameworks are considered as one entity noted TensorFlow/Keras.
AI/ML frameworks can be completed and enriched with libraries, for example to provide optimization and compression tools such as:
· NNC : clause §6.5.7
· AI Model Efficiency ToolKit (AIMET) clause §6.6. 

Both libraries support TensorFlow/Keras and PyTorch environments.
8.1	Framework popularity
PyTorch and Tensorflow/Keras are the two major and most popular frameworks for Deep Learning. 
PyTorch appears significantly more in academics as shown in the next graph [11]
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On the other hand, Tensorflow is much more popular in industry. 
The TensorFlow eco-system comprises some deployment-oriented applications like TensorFlow Serving and TensorFlow Lite for AI/ML application to be deployed on cloud, edge, server, mobile or IoT devices.
PyTorch has filled the gap by proposing TorchServe [12] and PyTorch Live [9].

8.2	Detailed framework characteristics
Framework or library tools available (compression, quantization etc.):
· TensorFlow and Pytorch natively support optimization and quantization tools.
Hardware accelerator support:
List of tools for optimizing the ML models.
· It is very likely that the model performance will be evaluated with various processing conditions, being CPU, GPU, TPU or others like DSP.
· TensorFlow/Keras and PyTorch already integrate such capabilities:
· TensorFlow/Keras GPU or TPU usage in respectively [13] and [14]
· PyTorch GPU or TPU usage in respectively [15] and [16]
Supported models.
Natively both frameworks TensorFlow/Keras and PyTorch integrate many pre-trained models, this is described in document “models for evaluation”. If the model is not available, it can be reconstructed from its known architecture and trained.
A list of pre-trained model support is proposed for keras in [17], and for Pytorch in [18].
Split function
Splitting functionality shall be evaluated to point out the benefits it can bring to the 5G system (latency, energy, privacy), but also to measure and characterize the intermediate data. Therefore, the framework shall offer APIs/functions to split some models. This function is already available in TensorFlow/Keras framework as described in doc Split scenarios for evaluation and TensorFlow based split evaluation platform.
Mobile or on-device versions
Both PyTorch and TensorFlow/Keras have their own mobile solutions TensorFlow Lite [8] and PyTorch Live [9].
Language
Both PyTorch and TensorFlow/Keras are Python based. 
TensorFlow supports additionally JavaScript, C++ and Java.
Supported format for AI/ML models
PyTorch and TensorFlow/Keras support Open Neural Network eXchange (ONNX) and Neural Network Exchange Format (NNEF).
· ONNX: Tensorflow models (including Keras and TensorFlow Lite models) can be converted to ONNX [19]. PyTorch models can be exported to the ONNX format [20]. ONNX support tools for porting PyTorch model into TensorFlow or vice-versa.
· NNEF: supported by Khronos and designed to support both PyTorch and TensorFlow. NNEF tools can convert trained models from/to ONNX format [21].

9	AI/ML models
There may be several cases for the availability of AI/ML models:
1. Pre-trained models available from the AI/ML frameworks and libraries
2. Pre-trained models not available from the frameworks but from an external source, for instance GitHub
3. Non-trained models
4. New models 

Case 1) can be illustrated by the ResNet50 model which is available from both PyTorch and TensorFlow/Keras frameworks.
Case 2) can be illustrated with the EDSR model, where the model authors proposed a PyTorch implementation of their model which is available from a GitHub repository.
Case 3) is where proponents want to perform experiments from a well-known model and retrain it with a specific dataset corresponding to the use case to be evaluated. For example, YOLO or AlexNet are not available in TensorFlow/Keras.
Case 4) is for proponents who propose new model architecture.
For case 2), the proponent shall share the information on how to get the model, and how to run the experiments.
For cases 3) and 4), the proponents shall share the AI/ML model data (dataset, hyperparameters, etc.…) and describe how they train the AI/ML model.
9.1	Model characteristics
Several characteristics that may define an AI/ML model:
· Model Popularity within scientific community: The model is often cited in scientific papers and as such is recognized as an efficient model by many frameworks, in particular the frameworks listed in doc “Frameworks for evaluation”. ResNet50 or MobileNet are good examples of such models.
· Availability as a pre-trained version: Pre-trained version of the model as proposed by the framework should be preferred. Untrained models are possible under conditions above.
· AIML model Task: It depends on the use cases and scenarios to evaluate. The preferred domain is computer vision, which include object detection, image recognition, segmentation, pose estimation, image classification.
· Format: By default, the model format is the framework model format to be supported, for example ONNX and/or NNEF.
· Splitability: Ability to split/partition the model in two subsets. Some models may be easier to split than others depending on the complexity of the relations between the layers.  

9.2	Pre-trained model repositories
ModelZoo [22] is a popular repository providing open-source deep learning code and pre-trained models for a range of different frameworks (e.g., TensorFlow, Pytorch) and for different model tasks categories (e.g. computer vision, NLP).
TensorFlow proposes a collection of pre-trained models in [23], [24] and [25].
Keras Applications [24] are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.
10	Scenarios
10.1	Transmission of compressed AI/ML model data for automatic speech recognition
10.1.1	Motivation and use case relevance
AI/ML model data distribution and sharing over 5G system has been identified in TR 22.874 [1] as one of the three key operations for AI/ML related services. Reason for this is that UEs might need a great variety of AI/ML models to respond to different tasks and environments, while not being able to store all needed AI/ML models due to memory storage constraints, so that a frequent context adaptive down-loading of AI/ML model data is necessary. 
To tackle this problem, methods for model compression have been proposed (see clause 6 of other PD), which provide the benefits that they 1) lower bandwidth requirements or latencies for model data distribution, and 2) reduce the memory footprint of the AI/ML models on the UEs. However, besides the reduction of the model size, compression can also lead to a decrease of the AI/ML model performance. Which performance-compression trade-offs can be reached by different AI/ML model compression methods is thus an important question when defining AI/ML related services and is thus investigated in this scenario. 
From the media-based AI/ML use cases defined in clause 4, the following require the transmission of AI/ML model data and thus could benefit from model compression:
1. Full or partial transfer of models for object recognition in image and video (clause 4.1) 
2. Transfer of models for post-filtering for video coding (clause 4.2.1.2)
3. Transfer of models for crowd-sourcing media capture (clause 4.3.1)
4. Transfer of models for NLP on speech (clause 4.4)

This scenario evaluates the transmission of the wav2vec 2.0 [3] and the HuBERT [4] AI/ML models for automatic speech recognition (ASR), which derive a transcript of a given speech sequence. The transmission of compressed AI/ML models for ASR is relevant in the following use cases defined in clause 4:
· Crowd-Sourcing Media Capture (clause 4.3.1): To adapt to background noise or for lyrics recognition, specialized AI/ML models for ASR need to be transferred to a huge number of UEs for device inference.
· NLP on Speech (clause 4.4.): An initial ASR model needs to be down-loaded to the UE; then updated model data needs to be shared frequently with other UEs for distributed/federated learning.
10.1.2	Description of scenario
In this scenario, a pre-trained AI/ML model for ASR, wav2vec 2.0 [3] or HuBERT [4], is transmitted to an UE as shown in figure 10.1.2-1. To reduce bandwidth requirements or latencies the model is compressed before transmission. The compression method might be implemented as sender-only compression/optimization technique or might comprise an encoder at the sender-side and a decoder at the receiver-side.
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[bookmark: _Ref134222221]Figure 10.1.2-1: Transmission of the ASR model
How the ASR model can be employed by an UE to derive a transcript of a speech sequence is shown in figure 10.1.2-2, which comprises the following entities:
· A speech sequence stored as uncompressed audio file sampled with 16kHz.
· The ASR model inferring a classification for the speech sequence. 
· A vector sequence representing the classification. Each vector comprises 29 elements specifying the probability (represented as logits) of the 29 labels: '-', ' ', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', ''', 'X', 'J', 'Q', and 'Z'.
· A label selector selecting the most probable labels from the vector sequence.
· The predicted transcript, i.e. the sequence of selected labels.
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[bookmark: _Ref132127302]Figure 10.1.2-2: Prediction of a transcript with the reconstructed ASR model
10.1.3	Supporting companies and 3GPP members
· Fraunhofer HHI
· Nokia Corporation
10.1.4	Anchor AI/ML DNN model(s) for the scenario
Several pre-trained AI/ML models for ASR are provided by the TorchAudio library [5] under MIT License. For evaluation, the models listed in table 10.1.4-1 should be used.
	TorchAudio name
	numParam [M]
	sizeAnc [Mbit]
	werAnc[%]

	WAV2VEC2_ASR_BASE_960H
	94.4
	3021
	3.4

	HUBERT_ASR_LARGE
	315.5
	10095
	2.1



[bookmark: _Ref134157465]Table 10.1.4-1: Number of parameters (numParam), size (sizeAnc) and word error rates (werAnc) of the anchor models
The WAV2VEC2_ASR_BASE_960H [6] model consist of several convolutional layers for feature extraction and a transformer. It is pre-trained 960 hours of audio data from the Librispeech data set [8][9] and has been fine-tuned on 960 hours of audio data from the same set. 
The HUBERT_ASR_LARGE [7] is a modified version of the wav2vec 2.0 model. It is pre-trained on 60.000 hours of unlabeled audio data from the Libri-Light [10] dataset and has been fine-tuned on 960 hours of audio data from the Librispeech data set [8][9]. It achieves a lower word error rate, but has more parameters.
10.1.5	Testbed architecture and anchors
The testbed architecture corresponds to the example testbed architecture defined in clause 5.2 and shown in figure 5.2-1. The following applies for the shown functional blocks:
· The test encoder can also be a sender-only optimization/compression technique.
· The test decoder might be absent for sender-only optimization techniques.
· The reference data set is the test-clean dataset as shown in table 10.1.8-1. 
· The anchor model is one of the models shown in table 10.1.4-1. 
· The inference output processor corresponds to the pipeline shown in figure 5.2-1.
· Metrics computation derives the word error rate (wer) and the model size (size) as defined in clause 6.
10.1.6	Test configuration factors, constraints and settings
For encoding, data-dependent optimization techniques might be used. The Librispeech dev-clean dataset, as shown in table 10.1.8-1, might be used for optimization. 

10.1.7	Feasibility/performance evaluation metrics and requirements
The anchor model and test bitstream are provided as files containing the model parameters. The file size (size) combined with the word error rate (wer) achieved by the reconstructed ASR model after inference are employed to determine the efficiency of a compression method.
File Size
The anchor model and test bitstream can be stored as follows:
a) The anchor model is provided as data file containing numParam uncompressed model parameters individually represented as N-byte floating-point values.
b) For encoder-only compression methods, the test bitstream is provided as data file containing numParam quantized and/or reduced model parameters individually represented as N-byte values.
c) For methods requiring a decoder, the test bitstream is a coded representation encoding the parameters jointly. 

For all cases, size can be determined by measuring the file size. For cases a) and b), the size in bit can also be determined as numParam * 8 * N.
Word Error Rate
To quantify the performance of the anchor and the reconstructed model, the word error rate (wer) is used, which has also been applied in the original publication of the wav2vec 2.0 model [3]. The word error rate is determined on a set of data pairs. Each pair comprises 
· a speech sequence stored as uncompressed audio file, and
· a reference transcript of the audio sequence stored as text file.
Using the dataset, the wer value is determined in two steps:
1) A word error rate  is derived for each pair  of the dataset as follows:
· The AI/ML model is applied as shown in Figure 2.3-2 using the speech sequence as input and obtaining a predicted transcript as output.
· The predicted and reference transcripts are split into a predicted and a reference list of words, respectively.
· The word error rate  of the predicted word list with respect to the reference word list is derived as follows

with , , and  denoting the number of word substitutions, word deletions, and word insertions in the predicted word list and  denoting the number of words in the reference list.
2) The total word error rate wer is derived as follows:

10.1.8	Test dataset(s) and scripts for the scenario
Evaluations use the Librispeech [8][9] datasets, which are available under Creative Commons Attribution 4.0 International License and shown in table 10.1.8-1. To quantify the performance of the anchor and the test model, the word error rate (wer) is determined based on the test-clean dataset. For data-dependent encoder optimizations, the dev-clean dataset might be used. The datasets can be automatically down-loaded, e.g. by using the exemplary python-script shown in figure 10.1.8-1. 

	Name
	Number of sequences
	Hours of audio

	test-clean
	2620
	5.4

	dev-clean
	2864
	5.4



[bookmark: _Ref134157550]Table 10.1.8-1: Datasets considered in the scenario
The exemplary script derives word error rate and file size of the anchor models. Further scripts to create and evaluate the reconstructed models can be obtained from TBD [Ed.: A link to a “framework repository” might be added here, currently the scripts are attached to the document]. They can be generically extended by different compression methods.

import torch            # Version 2.0.0 required
import torchaudio       # Version 2.0.1 required
import torchaudio.datasets as datasets
from torchaudio.functional import resample
from torcheval.metrics import WordErrorRate


test_dir = "D:\\data" # This directory should exist, datasets will be stored here.
device   = "cpu" # or "cuda"

def eval_test_case( test_case, bundle ):
    print('Evaluating test case {test_case}'.format( test_case=test_case) )

    ####### Get Model ##############################
    model       = bundle.get_model()
    sample_rate = bundle.sample_rate
    labels      = bundle.get_labels()

    ####### Get Data Loader Model ##################
    val_loader = torch.utils.data.DataLoader(
                datasets.LIBRISPEECH(test_dir, "test-clean", "LibriSpeech", True ),
                batch_size=1, shuffle=False, num_workers=1, pin_memory=True)

    ####### Evaluate Model #########################
    model.eval()
    model.to( device )
    metric = WordErrorRate()
    blank  = 0

    with torch.inference_mode():
        for speech_sequence, cur_sample_rate, reference_transcript, *dump in val_loader:

            # Resample speech sequence if necessary
            if cur_sample_rate != sample_rate:
                speech_sequence = resample(speech_sequence, cur_sample_rate, sample_rate)

            speech_sequence = speech_sequence.reshape( (1,-1) )
            speech_sequence = speech_sequence.to(device)

            # Apply the ASR model
            vetor_sequence, _ = model(speech_sequence)

            # Select labels
            idcs = torch.argmax(vetor_sequence[0], dim=-1)
            idcs = torch.unique_consecutive(idcs, dim=-1)
            idcs = [i for i in idcs if i != blank]
            predicted_transcript = "".join([labels[i] for i in idcs])
            predicted_transcript = predicted_transcript.replace("|"," ")

            # Update error
            metric.update( predicted_transcript, reference_transcript[0] )

    wer_Anc = metric.compute()
    print('   wer_Anc: {wer_Anc:.3f} %'.format(wer_Anc=wer_Anc*100))

    ####### Get Model Size #########################
    num_parameters = 0
    for param in model.parameters():
        num_parameters += param.numel()

    # Each parameter is stored as 32 bit float, so multiply by four
    size_Anc = num_parameters * 4 * 8
    print('   size_Anc: {size_Anc:.3f} Mbit'.format(size_Anc=size_Anc/1000/1000))

if __name__ == '__main__':
    eval_test_case( 1, torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H )
    eval_test_case( 2, torchaudio.pipelines.HUBERT_ASR_LARGE       )



[bookmark: _Ref134157799]Figure 10.1.8-1: Exemplary python script for determining sizeAnc and werAnc.

10.1.9	Detailed test conditions
A compression method under test is evaluated using the test cases shown in table 10.1.9-1.
	Test case
	Model
	wer range 

	1
	WAV2VEC2_ASR_BASE_960H
	3.4% to 8.4%

	2
	HUBERT_ASR_LARGE
	2.1% to 7.1%



[bookmark: _Ref134157837]Table 10.1.9-1: Test cases and respective wer ranges. werAnc and sizeAnc are given in table 10.1.4-1.

To characterize a compression method under test in a given test case, it is evaluated using different test configurations T, which might be produced by varying encoder parameters, e.g. quantization parameters or sparsification ratios. More specifically, for each test configuration T from a set of test configurations, a data pair (cSize, wer) is derived with
· cSize denoting the size of the test bitstream size divided by the size of anchor model sizeAnc and
· wer denoting the word error rate of the test model.

If possible, the set of test configurations should contain at least 5 test configurations T that produce word error rates in the range of werAnc to werAnc+0.05 as shown in Table 2.10-1.
For comparison, (cSize, wer) pairs, as well as werAnc, might be reported graphically, as shown in figure 10.1.9-1.
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[bookmark: _Ref132128795]Figure 10.1.9-1: Example for the characterization of a compression method for different test configurations T 
10.1.10	Interoperability considerations for the scenario
Download (possibly via TCP) of the model data is expected.
10.1.11	External performance data
None.
10.1.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.1.13	Additional information
The wav2vec 2.0 model has been successfully employed for ASR on mobile devices: An Android-based implementation can be downloaded from [11]. An evaluation of the wav2vec 2.0 model on a device with limited computational performance can be found in [12].
10.1.14	References for the scenario
[1] [bookmark: _Ref134444835][bookmark: _Ref132134545][bookmark: _Ref126845156]3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2] [bookmark: _Ref134156937]S4-230648 [FS_AI4Media] Permanent Document v0.7, April 2023. 
[3] [bookmark: _Ref134157052][bookmark: _Ref134156970][bookmark: _Ref132125699][bookmark: _Ref126845184]A. Baevski, H. Zhou, A. Mohamed and M. Auli, “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations”, arXiv, 2006.11477, 2020
[4] [bookmark: _Ref134157081]W.-N. Hsu, B. Bolte, Y.-H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed. “Hubert: self-supervised speech representation learning by masked prediction of hidden units”, arXiv, 2106.07447, 2021
[5] [bookmark: _Ref132125728]TorchAudio: An audio library for Pytorch [Computer software], https://github.com/pytorch/audio, V2.0.1
[6] [bookmark: _Ref132128434]TorchAudio: WAV2VEC2_ASR_BASE_960H, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
[7] [bookmark: _Ref134157270][bookmark: _Ref132125708][bookmark: _Ref123731535]TorchAudio: HUBERT_ASR_LARGE, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.HUBERT_ASR_LARGE.html
[8] [bookmark: _Ref134157238]V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Australia, 2015
[9] [bookmark: _Ref134157240]OpenSLR, LibriSpeech ASR corpus [Online], https://www.openslr.org/12 
[10] [bookmark: _Ref134157305][bookmark: _Ref132125712]J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux. “Libri-light: a benchmark for ASR with limited or no supervision”. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 7669–7673. 2020. https://github.com/facebookresearch/libri-light.
[11] [bookmark: _Ref134157361]Pytorch: Speech Recognition on Android with Wav2Vec2 Low complexity implementation [Computer Software], https://github.com/pytorch/android-demo-app/tree/master/SpeechRecognition
[12] [bookmark: _Ref134157369]S. Gondi, "Wav2vec2.0 on the edge: Performance evaluation", arXiv, 2202.05993, 2022

10.2	Split inferencing for human pose estimation
10.2.1	Motivation and use case relevance
Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.
Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.
Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1.
10.2.2	Description of the scenario
In this scenario, a pre-trained AI/ML model for human pose estimation, PoseNet (MobileNetV1 backbone, FP32) [1], is split into two different parts (split models) for split inferencing. The first part is inferenced on a low-capability device (e.g. Samsung A series, TBC), and the second part is inferenced on a high-capability device (e.g. Samsung Galaxy S23, TBC) which simulates a network resource entity. The scenario corresponds to the topology shown in figure 5.1.1.1-1, the split AI/ML model inference topology where the UE is the media data source with first inference endpoint on the UE. Prior to the service, the (split) pre-trained model (anchor model) is assumed to be available on the high-capability device, and the inference input data (test dataset) is assumed to be available on the low-capability device.
The scenario considers the splitting of PoseNet at different layers in order to measure the overall performance and data characteristics of split inferencing between two nodes of differing computational capabilities.
As part of the scenario, the delivery of AI/ML data from between the two devices are taken in account, more specifically:
- Delivery of the split model from the high-capability device (network) to the low-capability device
- Delivery of the intermediate data (output of first split inference) from the low-capability device to the high-capability device
The inference output of PoseNet for the scenario will be to detect, in an instance-agnostic fashion, all visible keypoints belonging to any person in a corresponding input image.
10.2.3	Supporting companies and 3GPP members
· Samsung Electronics Co., Ltd.
10.2.4	Anchor AI/ML DNN model(s) for the scenario
For the evaluation of this scenario, the PoseNet (MobileNetV1 backbone, FP32) model is used. PoseNet as a reference implementation of a TensorFlow Lite pose estimation model is available from TensorFlow [1] and is licensed under the Creative Commons Attribution 4.0 License.
	Model
	Size (MB)
	mAP
	No. of layers
	No. of parameters

	PoseNet (MobileNetV1 backbone, FP32)
	13.3MB
	45.6
	31
	1,180,147


Table 10.2.4-1: Anchor model(s) for the scenario
10.2.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 5.1.


Figure 10.2.5-1 Testbed architecture for the scenario
The split configurations for the scenario are compared to two anchors:
1. Where the anchor model is inferenced completely on the low capability device
2. Where the anchor model is inferenced completely on the high capability device (simulating a network entity), with the test dataset and inference output delivered via the test network
The anchor model used is that shown in table 10.2.4-1.
Multiple model split configurations are considered as described in clause 10.2.6.
10.2.6	Test configuration factors, constraints and settings
PoseNet is composed of 31 different layers, resulting in 32 different possible split point configurations between the two inference nodes, including the two anchors as mentioned in clause 10.2.5 (layers inference on first node : layers inferenced on second node):
· 0:31
· 1:30
· 2:29
· …
· 31:0
The scenario aims to evaluate each of the 32 split point configurations, with each split configuration tested at a range of different network bandwidth configurations (specific bandwidths TBC).
Latencies due to any pre-processing (e.g. downscaling/upscaling) required on the test dataset for the input into PoseNet will not be taken into consideration as part of the scenario metrics.
Processing capability related configurations are dependent on the devices used for the scenario as described in clause 10.2.2.
10.2.7	Feasibility/performance evaluation metrics and requirements
For each split point configuration, the following metrics are computed:
· Test split model file sizes
· Intermediate data size or bitrate
· Inference latency at each device
· Optionally, additional performance measurements (complexity) at each device
Performance measurements may use the native benchmark binary or Android benchmark app as provided by TensorFlow (or scripted developed independently) in order to measure: certain KPIs which may include, but are not limited: initialization time, inference time of warmup state, inference time of steady state, memory usage during initialization time and overall memory usage.
10.2.8	Test dataset(s) and scripts for the scenario
The test dataset is comprised of a subset of images from COCO (Common Objects in Context) [2].
The annotations in the COCO dataset belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License, whilst the images are also under a Creative Commons license, the use of which must abide by the Flickr Terms of Use.
Test dataset and scripts to be provided by SA4 #125 (August, 2023).
10.2.9	Detailed test conditions
TBD.
10.2.10	Interoperability considerations for the scenario
None.
10.2.11	External performance data
None.
10.2.12	Expected time plan for the scenario completion
Provide test dataset and scripts – SA4 #125, August, 2023
Completion – SA4 # 126, November, 2023
10.2.13	Additional information
None.
10.2.14	References for the scenario
[1] https://www.tensorflow.org/lite/examples/pose_estimation/overview
[2] https://cocodataset.org/#home
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