
Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA4-e (AH) Video SWG post 124	S4aV230044
Online, 20th June – 1st August 2023 	

Source: 	China Unicom
Title: 	Discussion on the Eye Gaze Parameters Monitoring
Document for	Discussion and Agreement
Agenda item: 	3.7- FS_ARMRQoE (Feasibility Study on AR and MR QoE Metrics)
Introduction
Some body action parameters are already defined in the TR 26.812 v0.5 [1], e.g. Viewer pose, which can be monitored via the observation point 1 of the AR architecture. But eye gaze related parameters are not defined and discussed in TR 26.812 yet, which may also has impact on user experience.
[bookmark: _GoBack]This paper presents eye gaze parameters that can be monitored based on the runtime component, with reference to the OpenXR standard [2].
Observable parameters for OP1
Eye gaze pose prediction parameters
Eye gaze typically consists of a gaze origin (a point positioned between the user’s eyes) and a gaze direction (a ray pointing towards where the user is looking at), and gaze point (a three-dimensional position where the user is looking at). There are two different cases to use eye gaze information, e.g. for eye interacting and for eyes rendering in XR experience.
In the eye interaction case, it’s described in the OpenXR [2] that applications can get eye gaze input from an eye tracker to enable eye gaze interactions by XR_EXT_eye_gaze_interaction extension. With this extension, an application can discover if the XR runtime has access to an eye tracker, bind the eye gaze pose to the action system, determine if the eye tracker is actively tracking the users eye gaze, and use the eye gaze pose as an input signal to build eye gaze interactions [2].
The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned. The eye gaze pose may originate from a point positioned between the user’s eyes. At the time both the position and direction of the eye pose is tracked. The runtime must set both XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT. To allow for an application to reason about high accuracy eye tracking, the application can chain in an XrEyeGazeSampleTimeEXT to the next pointer of the XrSpaceLocation structure passed into the xrLocateSpace call. The XrEyeGazeSampleTimeEXT structure is defined as below:
[image: ]
Figure 2.1-1: XrEyeGazeSampleTimeEXT [2]
In XrEyeGazeSampleTimeEXT structure, it’s defined that time is when in time the eye gaze pose is expressed. The time in the XrEyeGazeSampleTimeEXT structure can be set to the clamped, predicted or interpolated time. The application may inspect the time field to understand when in time the pose is expressed. The time field may be in the future if a runtime can predict gaze poses. So eye gaze poses can be predicated based on the future time.
In eye interaction case, eye gaze pose prediction parameters may be monitored or observed via the OP1. 
In the case that applications needs to render eyes in XR experience and obtain position and orientation of the user’s eyes, such as driving the animation of avatar eyes, the XrEyeTrackerFB handle can be used to represent the resources for eye tracking. This handle is used for getting eye gaze using xrGetEyeGazesFB function. The xrGetEyeGazesFB function is defined as below:
[image: ]
Figure 2.1-2: xrGetEyeGazesFB [2]
In the xrGetEyeGazesFB function, gazeInfo is the information to get eye gaze, and eyeTracker is a pointer to XrEyeGazesFB receiving the returned eye poses and confidence. The XrEyeGazesInfoFB structure describes the information to get eye gaze directions, whose structure is defined as below:
[image: ]
Figure 2.1-3: XrEyeGazesInfoFB [2]
In the xrGetEyeGazesFB function, baseSpace is an XrSpace within which the returned eye poses will be represented. The time is an XrTime at which the eye gaze information is requested.
The XrEyeGazesFB structure returns the state of the eye gaze directions, which structure is defined as below:
[image: ]
Figure 2.1-4: XrEyeGazesFB [2]
The gaze is an array of XrEyeGazeFB receiving the returned eye gaze directions, and the time is an XrTime time at which the returned eye gaze is tracked or extrapolated to.
XrEyeGazeFB structure describes the validity, direction, and confidence of a social eye gaze observation, which structure is defined as below:
[image: ]
Figure 2.1-5: XrEyeGazeFB [2]
The gazePose is an XrPosef describing the position and orientation of the user’s eye. XrPosef structure is defined as below:
[image: ]
Figure 2.1-6: XrPosef [2]
The pose is represented in the coordinate system provided by XrEyeGazesInfoFB::baseSpace. The gazeConfidence is a float value between 0 and 1 that represents the confidence for eye pose. A value of 0 represents no confidence in the pose returned, and a value of 1 means maximum confidence in the returned eye pose. The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned, similar to the XR_REFERENCE_SPACE_TYPE_VIEW in [2].
Eye gaze pose parameters, such as user’s eye position and orientation parameter can be predicted at a future time base on the field of XrTime in XrEyeGazesFB structure. 
In the eye rendering in XR experience cases, eye gaze pose prediction parameters may be monitored or observed via the OP1.
In summary, for either eye interaction or eye rendering cases, the eye gaze pose prediction parameters can be monitored or observed via the OP1.
Proposal
We propose to agree that eye gaze pose prediction parameter may be monitored by the observation point 1 in both eye interaction case and eye rendering in XR experience case and capture it into the TR 26.812.
References
[1] S4-230987 TR 26812_050
[2] The OpenXR Specification, Copyright (c) 2017-2023, The Khronos Group Inc., Version 1.0.27: from git ref release-1.0.27


- 3/3 -
image1.png
typedef struct XrEyeGazeSampleTimeEXT
XrStructureType type;
void* next;
XrTime time;

} XrEyeGazeSampleTimeEXT;




image2.png
// Provided by XR_FB_eye_tracking_social

XrResult xrGetEyeGazesFB(
XrEyeTrackerFB eyeTracker,
const XrEyeGazesInfoFB* gazelnfo,
XrEyeGazesFB* eyeGazes);




image3.png
// Provided by XR_FB_eye_tracking_social
typedef struct XrEyeGazesInfoFB {
XrStructureType type;

const void* next;
XrSpace baseSpace;
XrTime time;

} XrEyeGazesInfoFB;




image4.png
// Provided by XR_FB_eye_tracking_social
typedef struct XrEyeGazesFB {
XrStructureType type;

void* next;
XrEyeGazeFB gaze[XR_EYE_POSITION_COUNT_FB];
XrTime time;

} XrEyeGazesFB;




image5.png
// Provided by XR_FB_eye_tracking_social
typedef struct XrEyeGazeFB {

XrBool32 isvalid;

XrPosef gazePose;

float gazeConfidence;
} XrEyeGazeFB;




image6.png
typedef struct XrPosef {
XrQuaternionf orientation;
XrVector3f position;

} XrPosef;




