3GPP TSG-SA4-e (AH) Video SWG post 123	S4aV230020
Online, 9th May 2023
Source:	Fraunhofer Heinrich Hertz Institute (HHI), Nokia Corporation
Title:	[FS_AI4Media] Scenario for transmission of compressed AI/ML model data for automatic speech recognition
Agenda item:	3.6
Document for:	Discussion and Agreement

1 Introduction
Transmission of AI/ML model data has been identified as one of key operations for AI/ML related services in TR 22.874 [1]. Based on this, one of the objectives of the feasibility study on AI/ML for Media is to investigate the potential of compression for AI/ML models. As starting point for such an evaluation, this document proposes a scenario that covers several use cases defined in clause 4 of the permanent document [2]. In the scenario, a state-of-the-art transformer model (wav2vec 2.0 [3] or HuBERT [4]) for automatic speech recognition (ASR) is transmitted and used for inference by an UE. For evaluation, we propose to investigate which model performance-size trade-offs can be achieved with different compression methods. Further test cases might be added in future meetings.
The document is based on S4-230565, but has been modified considering the discussion at the 123th SA4 meeting. In particular, its structure corresponds the scenario template defined in clause 7.1 of the permanent document. Furthermore, an additional ASR model has been added. Basic python scripts, which can be extended by compression methods, have been attached to the document.
2 Proposed scenario for clause 7.9 (Scenarios)
Scenario name
Transmission of compressed AI/ML model data for automatic speech recognition
Motivation and use case relevance
AI/ML model data distribution and sharing over 5G system has been identified in TR 22.874 [1] as one of the three key operations for AI/ML related services. Reason for this is that UEs might need a great variety of AI/ML models to respond to different tasks and environments, while not being able to store all needed AI/ML models due to memory storage constraints, so that a frequent context adaptive down-loading of AI/ML model data is necessary.
To tackle this problem, methods for model compression have been proposed (see clause 6), which provide the benefits that they 1) lower bandwidth requirements or latencies for model data distribution, and 2) reduce the memory footprint of the AI/ML models on the UEs. However, besides the reduction of the model size, compression can also lead to a decrease of the AI/ML model performance. Which performance-compression trade-offs can be reached by different AI/ML model compression methods is thus an important question when defining AI/ML related services and is thus investigated in this scenario.

From the media-based AI/ML use cases defined in clause 4, the following require the transmission of AI/ML model data and thus could benefit from model compression:

1. Full or partial transfer of models for object recognition in image and video (clause 4.1)
2. Transfer of models for post-filtering for video coding (clause 4.2.1.2)
3. Transfer of models for crowd-sourcing media capture (clause 4.3.1)
4. Transfer of models for NLP on speech (clause 4.4)

This scenario evaluates the transmission of the wav2vec 2.0 [3] and the HuBERT [4] AI/ML models for automatic speech recognition (ASR), which derive a transcript of a given speech sequence. The transmission of compressed AI/ML models for ASR is relevant in the following use cases defined in clause 4:

· Crowd-Sourcing Media Capture (clause 4.3.1): To adapt to background noise or for lyrics recognition, specialized AI/ML models for ASR need to be transferred to a huge number of UEs for device inference.
· NLP on Speech (clause 4.4.): An initial ASR model needs to be down-loaded to the UE; then updated model data needs to be shared frequently with other UEs for distributed/federated learning.
Description of the scenario
In this scenario, a pre-trained AI/ML model for ASR, wav2vec 2.0 [3] or HuBERT [4], is transmitted to an UE as shown in Figure 2.3-1. To reduce bandwidth requirements or latencies the model is compressed before transmission. The compression method might be implemented as sender-only compression/optimization technique or might comprise an encoder at the sender-side and a decoder at the receiver-side.

[bookmark: _Ref134222221]Figure 2.3-1: Transmission of the ASR model

How the ASR model can be employed by an UE to derive a transcript of a speech sequence is shown in Figure 2.3-2, which comprises the following entities:

· A speech sequence stored as uncompressed audio file sampled with 16kHz.
· The ASR model inferring a classification for the speech sequence.
· A vector sequence representing the classification. Each vector comprises 29 elements specifying the probability (represented as logits) of the 29 labels: '-', ' ', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', ''', 'X', 'J', 'Q', and 'Z'.
· A label selector selecting the most probable labels from the vector sequence.
· The predicted transcript, i.e. the sequence of selected labels.

[bookmark: _Ref132127302]Figure 2.3-2: Prediction of a transcript with the reconstructed ASR model
Supporting companies and 3GPP members
· Fraunhofer HHI
· Nokia Corporation
Anchor AI/ML DNN model(s) for the scenario
Several pre-trained AI/ML models for ASR are provided by the TorchAudio library [5] under MIT License. For evaluation, the models listed in Table 2.5-1 should be used.

	TorchAudio name
	numParam [M]
	sizeAnc [Mbit]
	werAnc[%]

	WAV2VEC2_ASR_BASE_960H
	94.4
	3021
	3.4

	HUBERT_ASR_LARGE
	315.5
	10095
	2.1

[bookmark: _Ref134157465]Table 2.5-1: Number of parameters (numParam), size (sizeAnc) and word error rates (werAnc) of the anchor models
The WAV2VEC2_ASR_BASE_960H [6] model consist of several convolutional layers for feature extraction and a transformer. It is pre-trained 960 hours of audio data from the Librispeech data set [8][9] and has been fine-tuned on 960 hours of audio data from the same set.

The HUBERT_ASR_LARGE [7] is a modified version of the wav2vec 2.0 model. It is pre-trained on 60.000 hours of unlabeled audio data from the Libri-Light [10] dataset and has been fine-tuned on 960 hours of audio data from the Librispeech data set [8][9]. It achieves a lower word error rate, but has more parameters.

Testbed architecture and anchors
The testbed architecture corresponds to the example testbed architecture defined in clause 7.4.2 and shown in Figure 7.4.2-1. The following applies for the shown functional blocks:

· The test encoder can also be a sender-only optimization/compression technique.
· The test decoder might be absent for sender-only optimization techniques.
· The reference data set is the test-clean dataset as shown in Table 2.9-1.
· The anchor model is one of the models shown in Table 2.5-1.
· The inference output processor corresponds to the pipeline shown in Figure 2.3-2.
· Metrics computation derives the word error rate (wer) and the model size (size) as defined in clause 2.8.

Test configuration factors, constraints and settings
For encoding, data-dependent optimization techniques might be used. The Librispeech dev-clean dataset, as shown in Table 2.9-1, might be used for optimization.
[bookmark: _Ref134159176]Feasibility/performance evaluation metrics and requirements
The anchor model and test bitstream are provided as files containing the model parameters. The file size (size) combined with the word error rate (wer) achieved by the reconstructed ASR model after inference are employed to determine the efficiency of a compression method.

File Size

The anchor model and test bitstream can be stored as follows:

a) The anchor model is provided as data file containing numParam uncompressed model parameters individually represented as N-byte floating-point values.
b) For encoder-only compression methods, the test bitstream is provided as data file containing numParam quantized and/or reduced model parameters individually represented as N-byte values.
c) For methods requiring a decoder, the test bitstream is a coded representation encoding the parameters jointly.

For all cases, size can be determined by measuring the file size. For cases a) and b), the size in bit can also be determined as numParam * 8 * N.

Word Error Rate

To quantify the performance of the anchor and the reconstructed model, the word error rate (wer) is used, which has also been applied in the original publication of the wav2vec 2.0 model [3]. The word error rate is determined on a set of data pairs. Each pair comprises

· a speech sequence stored as uncompressed audio file, and
· a reference transcript of the audio sequence stored as text file.
Using the dataset, the wer value is determined in two steps:

1) A word error rate is derived for each pair of the dataset as follows:
· The AI/ML model is applied as shown in Figure 2.3-2 using the speech sequence as input and obtaining a predicted transcript as output.
· The predicted and reference transcripts are split into a predicted and a reference list of words, respectively.
· The word error rate of the predicted word list with respect to the reference word list is derived as follows

with , , and denoting the number of word substitutions, word deletions, and word insertions in the predicted word list and denoting the number of words in the reference list.

2) The total word error rate wer is derived as follows:

Test dataset(s) and scripts for the scenario
Evaluations use the Librispeech [8][9] datasets, which are available under Creative Commons Attribution 4.0 International License and shown in Table 2.9-1. To quantify the performance of the anchor and the test model, the word error rate (wer) is determined based on the test-clean dataset. For data-dependent encoder optimizations, the dev-clean dataset might be used. The datasets can be automatically down-loaded, e.g. by using the exemplary python-script shown in Figure 2.9-1.

	Name
	Number of sequences
	Hours of audio

	test-clean
	2620
	5.4

	dev-clean
	2864
	5.4

[bookmark: _Ref134157550]Table 2.9-1: Datasets considered in the scenario
The exemplary script derives word error rate and file size of the anchor models. Further scripts to create and evaluate the reconstructed models can be obtained from TBD [Ed.: A link to a “framework repository” might be added here, currently the scripts are attached to the document]. They can be generically extended by different compression methods.

import torch # Version 2.0.0 required
import torchaudio # Version 2.0.1 required
import torchaudio.datasets as datasets
from torchaudio.functional import resample
from torcheval.metrics import WordErrorRate

test_dir = "D:\\data" # This directory should exist, datasets will be stored here.
device = "cpu" # or "cuda"

def eval_test_case(test_case, bundle):
 print('Evaluating test case {test_case}'.format(test_case=test_case))

 ####### Get Model ##############################
 model = bundle.get_model()
 sample_rate = bundle.sample_rate
 labels = bundle.get_labels()

 ####### Get Data Loader Model ##################
 val_loader = torch.utils.data.DataLoader(
 datasets.LIBRISPEECH(test_dir, "test-clean", "LibriSpeech", True),
 batch_size=1, shuffle=False, num_workers=1, pin_memory=True)

 ####### Evaluate Model #########################
 model.eval()
 model.to(device)
 metric = WordErrorRate()
 blank = 0

 with torch.inference_mode():
 for speech_sequence, cur_sample_rate, reference_transcript, *dump in val_loader:

 # Resample speech sequence if necessary
 if cur_sample_rate != sample_rate:
 speech_sequence = resample(speech_sequence, cur_sample_rate, sample_rate)

 speech_sequence = speech_sequence.reshape((1,-1))
 speech_sequence = speech_sequence.to(device)

 # Apply the ASR model
 vetor_sequence, _ = model(speech_sequence)

 # Select labels
 idcs = torch.argmax(vetor_sequence[0], dim=-1)
 idcs = torch.unique_consecutive(idcs, dim=-1)
 idcs = [i for i in idcs if i != blank]
 predicted_transcript = "".join([labels[i] for i in idcs])
 predicted_transcript = predicted_transcript.replace("|"," ")

 # Update error
 metric.update(predicted_transcript, reference_transcript[0])

 wer_Anc = metric.compute()
 print(' wer_Anc: {wer_Anc:.3f} %'.format(wer_Anc=wer_Anc*100))

 ####### Get Model Size #########################
 num_parameters = 0
 for param in model.parameters():
 num_parameters += param.numel()

 # Each parameter is stored as 32 bit float, so multiply by four
 size_Anc = num_parameters * 4 * 8
 print(' size_Anc: {size_Anc:.3f} Mbit'.format(size_Anc=size_Anc/1000/1000))

if __name__ == '__main__':
 eval_test_case(1, torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H)
 eval_test_case(2, torchaudio.pipelines.HUBERT_ASR_LARGE)

[bookmark: _Ref134157799]Figure 2.9-1: Exemplary python script for determining sizeAnc and werAnc.

[bookmark: _GoBack]

[bookmark: _Ref130674281]Detailed test conditions
A compression method under test is evaluated using the test cases shown in Table 2.10-1.

	Test case
	Model
	wer range

	1
	WAV2VEC2_ASR_BASE_960H
	3.4% to 8.4%

	2
	HUBERT_ASR_LARGE
	2.1% to 7.1%

[bookmark: _Ref134157837]Table 2.10-1: Test cases and respective wer ranges. werAnc and sizeAnc are given in Table 2.5-1.

To characterize a compression method under test in a given test case, it is evaluated using different test configurations T, which might be produced by varying encoder parameters, e.g. quantization parameters or sparsification ratios. More specifically, for each test configuration T from a set of test configurations, a data pair (cSize, wer) is derived with

· cSize denoting the size of the test bitstream size divided by the size of anchor model sizeAnc and
· wer denoting the word error rate of the test model.

If possible, the set of test configurations should contain at least 5 test configurations T that produce word error rates in the range of werAnc to werAnc+0.05 as shown in Table 2.10-1.

For comparison, (cSize, wer) pairs, as well as werAnc, might be reported graphically, as shown in Figure 2.10-1.

[bookmark: _Ref132128795]Figure 2.10-1: Example for the characterization of a compression method for different test configurations T

Interoperability considerations for the scenario
Download (possibly via TCP) of the model data is expected.
External performance data
None.
Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
Additional information
The wav2vec 2.0 model has been successfully employed for ASR on mobile devices: An Android-based implementation can be downloaded from [11]. An evaluation of the wav2vec 2.0 model on a device with limited computational performance can be found in [12].

3 References
[1] [bookmark: _Ref134444835][bookmark: _Ref132134545][bookmark: _Ref126845156]3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2] [bookmark: _Ref134156937]S4-230648 [FS_AI4Media] Permanent Document v0.7, April 2023.
[3] [bookmark: _Ref134157052][bookmark: _Ref134156970][bookmark: _Ref132125699][bookmark: _Ref126845184]A. Baevski, H. Zhou, A. Mohamed and M. Auli, “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations”, arXiv, 2006.11477, 2020
[4] [bookmark: _Ref134157081]W.-N. Hsu, B. Bolte, Y.-H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed. “Hubert: self-supervised speech representation learning by masked prediction of hidden units”, arXiv, 2106.07447, 2021
[5] [bookmark: _Ref132125728]TorchAudio: An audio library for Pytorch [Computer software], https://github.com/pytorch/audio, V2.0.1
[6] [bookmark: _Ref132128434]TorchAudio: WAV2VEC2_ASR_BASE_960H, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
[7] [bookmark: _Ref134157270][bookmark: _Ref132125708][bookmark: _Ref123731535]TorchAudio: HUBERT_ASR_LARGE, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.HUBERT_ASR_LARGE.html
[8] [bookmark: _Ref134157238]V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Australia, 2015
[9] [bookmark: _Ref134157240]OpenSLR, LibriSpeech ASR corpus [Online], https://www.openslr.org/12
[10] [bookmark: _Ref134157305][bookmark: _Ref132125712]J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux. “Libri-light: a benchmark for ASR with limited or no supervision”. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 7669–7673. 2020. https://github.com/facebookresearch/libri-light.
[11] [bookmark: _Ref134157361]Pytorch: Speech Recognition on Android with Wav2Vec2 Low complexity implementation [Computer Software], https://github.com/pytorch/android-demo-app/tree/master/SpeechRecognition
[12] [bookmark: _Ref134157369]S. Gondi, "Wav2vec2.0 on the edge: Performance evaluation", arXiv, 2202.05993, 2022
image1.png

image2.png

image3.png

