
 

Alliance for Open Media 
Codec Working Group 

Document: CWG-B080o_v4 

AV1 Tool on/off testing in libaom 

Date:  Oct 14, 2021 

Status:  Input document 

Purpose: Information 
Author(s): Hsiao-Chiang Chuang, Ryan Lei (Facebook) 

Agata Opalach, Andrey Norkin (Netflix) 
Email(s): {chuangh, ryanlei}@fb.com 

  {aopalach, anorkin}@netflix.com 
Source: Facebook, Netflix 
 

Abstract 

AV1 is the first open-source video coding standard developed by the Alliance for Open 

Media (AOM), which was finalized in 2018. During its standardization process, coding 

tools were gradually adopted into the specification based on a tradeoff between multiple 

parameters, such as bitrate, quality, encoding and decoding implementation complexity. 

A fair comparison of the coding tools supported by this standard can be essential for 

encoder designers who seek to achieve a good balance among all these factors within 

their implementations. To this end, this report compiles a tool-on/off analysis of several 

prominent coding tools supported by the AV1 specification. The analysis includes the 

impact of such tools on several objective quality metrics, i.e. PSNR-Y/U/V, SSIM, and 

VMAF, when using the reference encoder libaom implementation, as well as the 

corresponding impact on the SW runtime complexity of both the libaom encoder and 

decoder.  

  



CONTENTS 
Abstract .................................................................................................................................. 1 

1 Introduction...................................................................................................................... 3 

2 Brief description of coding tools ....................................................................................... 3 

2.1 Partitioning .............................................................................................................. 3 

2.2 Intra Prediction......................................................................................................... 4 

2.3 Inter prediction ......................................................................................................... 7 

2.4 Transform tools ...................................................................................................... 10 

2.5 In-loop filters ......................................................................................................... 10 

3 Test Results.................................................................................................................... 11 

3.1 Settings .................................................................................................................. 11 

3.2 Tool-on tests .......................................................................................................... 12 

3.2.1 Partitioning tools .............................................................................................. 13 

3.2.2 Intra coding tools .............................................................................................. 14 

3.2.3 SCC tools ......................................................................................................... 16 

3.2.4 Inter tools ......................................................................................................... 17 

3.2.5 Inter tools: extended compound modes .............................................................. 18 

3.2.6 Transform tools ................................................................................................ 20 

3.2.7 In-loop filters.................................................................................................... 21 

3.3 Tool-off tests .......................................................................................................... 22 

3.3.1 Partitioning tools .............................................................................................. 23 

3.3.2 Intra coding tools .............................................................................................. 24 

3.3.3 SCC tools ......................................................................................................... 26 

3.3.4 Inter tools ......................................................................................................... 27 

3.3.5 Inter tools: extended compound modes .............................................................. 28 

3.3.6 Transform tools ................................................................................................ 30 

3.3.7 In-loop filters.................................................................................................... 31 

3.4 Summary................................................................................................................ 32 

4 References ..................................................................................................................... 32 

 

  



1 Introduction 

The aim of this document is to provide some information about the relative performance of the 
majority of the coding tools supported in the AV1 [1] coding specification. This is achieved by 
evaluating such tools in the context of  the libaom reference SW of AV1 and by utilizing tool on/off 
tests. There are typically overlaps in coding gains among coding tools, and hence both tool on/off 
tests need to be performed to better understand the performance and behavior of a particular 
coding tool. In particular, a ‘tool-on’ test involves coding experiments where all AV1 coding tools 
to be evaluated are disabled in the encoder other than the tool under test. On the other hand, a 
‘tool-off’ test involves performs coding tests by enabling all AV1 coding tools other than the tool 
under test. In both ‘tool-on’ or ‘tool-off’ test, encoder is configured to enable/disable individual 
coding tools at mode decision stage without completely removing or adjusting any corresponding 
normative syntax elements.  

2 Brief description of coding tools 

2.1 Partitioning 

In the AV1 specification, partitioning of a super block (SB) follows a recursive quadtree, 
where each tree node is a square block with size of 2Nx2N (N = 21, 22, …, 26). This 
includes up to 10 partitioning types: square partition (2Nx2N/NxN), horizontal partition 

(2NxN), vertical partition (Nx2N), AB partition, and 1-to-4 partition (4NxN/Nx4N).  

 
 
Figure 1: Block partitioning supported in AV1. VP9 supports block partitions in the first row 
of this figure 



 
 

The AB partition involves a 3-way partitioning of a square block. On top of a horizontal or 
vertical partitioning, a further split is performed that is orthogonal to the direction of the 
first split in the first or the second partition. The 1-to-4 partition involves a 4-way 

partitioning of a square block with equal-sized partitioning vertically or horizontally. The 
maximum super block size is extended to 128x128 from 64x64 that is supported in VP9. 
In addition, the minimum block size with flexible inter-mode information is extended to 
4x4 from 8x8 in VP9. Figure 1 shows all the possible block-level partitions for square 

blocks in AV1. 
. 

2.2 Intra Prediction 

AV1 supports multiple intra prediction modes and tools, that include the following: 

1. Intra delta angles: VP9 supports 8 nominal directional modes ranging from 45 to 207 
degrees. In AV1, angular prediction modes are extended from the nominal modes 
supported in VP9 to include an extended set of angles with a finer granularity. In particular, 
additional angles at +/- 3 degrees between two consecutive modes were introduced. 
Therefore, a total of 56 (8 nominal x 7 delta angles) angular modes are supported in AV1 
[2]. 

2. Intra edge filter: for angular modes, a filter is applied to the neighboring reference 
samples based on the prediction mode used. In particular, the prediction mode can 
determine the filter strength, filter type, and filter taps that are applied on those reference 
samples prior to their use as predictors. An additional up-sampling filter is applied for 
blocks whose width is less than or equal to 16 [3]. 

3. Paeth intra mode: the TM_PRED mode in VP9 is replaced by the Paeth intra mode using 
the following formula to generate the prediction samples: 

𝑃(𝑥, 𝑦) = argmin
𝑝

(𝑝 − (𝑇 + 𝐿 − 𝑇𝐿)) , where 𝑝 ∈ {𝑇, 𝐿, 𝑇𝐿} 

where 𝑇, 𝐿, and 𝑇𝐿 are the reference samples from the neighboring block at positions 
(𝑥,-1), (-1, 𝑦), and (-1,-1), respectively. 

4. Smooth intra mode: there are three types of smooth modes in AV1: 

SMOOTH_H_PRED: 𝑃𝐻 (𝑥, 𝑦) = 𝜔(𝑥)𝐿 + (1 − 𝜔(𝑥))𝑇𝑅 

where 𝜔(𝑥) is a weight value from a look-up table that corresponds to the 𝑥 coordinate, 

and 𝐿 and 𝑇𝑅 are the reference samples at positions (-1, 𝑦) and (W-1, 𝑦), respectively. W 
represents the block width. 

SMOOTH_V_PRED: 𝑃𝑉 (𝑥, 𝑦) = 𝜔(𝑦)𝑇 + (1 − 𝜔(𝑦))𝐵𝐿 

where 𝜔(𝑦) is a weight value from a look-up table that corresponds to the 𝑦 coordinate, 
and 𝑇 and 𝐵𝐿 are the reference samples at positions (𝑥,-1) and (𝑥, H-1), respectively. H 
represents the block height. 



SMOOTH_PRED: 𝑃(𝑥, 𝑦) = (𝑃𝐻 (𝑥, 𝑦) + 𝑃𝑉 (𝑥, 𝑦))/2 

5. Filter-intra mode: each block (smaller than or equal to 32x32) is partitioned into a set of 
4x2 sub-blocks, and the prediction samples of the above, left, and above-left neighboring 
sub-blocks will be used as reference samples to generate the prediction of the subsequent 
sub-blocks. There are five prediction modes supported for the filter-intra mode: {DC, VER, 
HOR, D157, PAETH}. A set of predefined filter coefficients (7 neighboring samples x 5 
modes x 8 positions) are used to generate the prediction samples, as shown in Figure 2. 
A bilinear interpolation filter is applied if the associated reference sample is located in 
between two integer reference samples. 

 

Figure 2. An illustration of filter intra prediction mode 

6. Chroma-from-Luma (CfL) mode: in this mode, chroma prediction samples are generated 
by the collocated luma reconstructed samples. Prediction samples are generated using 
the following formula: 

𝑃(𝑥, 𝑦) = 𝛼 ∙ 𝑅𝐿𝑢𝑚𝑎 + 𝛽 



where 𝛼 is a parameter signaled in the bitstream and 𝛽 is estimated on-the-fly using the 
reconstructed samples of the chroma components [4]. Figure 3 shows the procedure of 
generating the chroma prediction samples using the CfL mode. 

 

Figure 3. An illustration of CfL mode in AV1 

7. Intra Block Copy (IBC) mode: a special mode where the prediction samples are 
generated using reconstructed samples from within the same frame. An integer 
displacement vector is signaled in the bitstream to find the position of the reference block 
within the same frame. Reconstructed samples within 256 samples to the left of the current 
SB are unavailable for prediction to reduce the impact on and improve pipelining of HW 
implementations. 

 

Figure 4. An illustration of IBC search region (128x128 superblock size) 

8. Palette mode: prediction samples are generated by encoding an index map for every 
sample within the block. The indices refer to entries in a palette of sizes ranging from 2 to 
8 (decided using an encoder search scheme), where the mapping from the indices to the 
sample intensity value is also signaled in the bitstream. 



 

Figure 5. An illustration of Palette Mode on an 8x8 block 

2.3 Inter prediction 
AV1 supports multiple inter prediction modes and tools, that include the following: 

1. Overlapped Block Motion Compensation (OBMC): OBMC is one of the three motion 
modes available in AV1, where it uses neighboring motion information to create additional 
prediction samples which are combined with the original prediction samples. The final 
prediction samples are generated using the following formula: 

𝑃(𝑥, 𝑦) = 𝑚(𝑖) ∙ 𝑃𝐶 (𝑥, 𝑦) + (1 − 𝑚(𝑖)) ∙ 𝑃𝑁 (𝑥, 𝑦) 

where 𝑚(𝑖) is a masking function that considers the distance 𝑖 to the block boundary as 
the input. 𝑃𝐶  and 𝑃𝑁  represent the prediction using the motion information of the current 
block and that of the neighboring block, respectively. The blending occurs for the top 
neighbors followed by the left neighbors, and the maximum distances for blending are ½ 
of the block height and ½ of the block width for the top and left neighbors, respectively [5]. 

2. Local Warp: Local Warp is another motion mode which derives sub-block (8x8 or 4x4) 
motion vectors to simulate affine motion for an inter block. The derivation of affine 



parameters is based on the motion information of the top and left blocks, as no additional 
syntax element is signaled for this mode [6]. 

 

Figure 6. Illustration of local warp parameter estimation [3] 

3. Global motion: This coding tool provides a way to code videos that may be characterized 

by global motion (up to affine motion) more efficiently. A set of frame-level affine 
parameters is signaled in the frame header with respect to every reference frame. This 
replaces the ZERO_MV in VP9 as a more generic way of signaling global motion [6]. The 
global motion uses the following matrix of parameters: 

 

Global motion supports three types of projections: affine, rotation and scaling, and 
translation 

For affine projection, ℎ31 = ℎ32 = 0,ℎ33 = 1, and it preserves parallelism 

 For rotation and scaling only, ℎ31 = ℎ32 = 0,ℎ33 = 1; ℎ11 = ℎ22 ,ℎ12 = −ℎ21 



 For translation, ℎ31 = ℎ32 = 0, ℎ33 = 1; ℎ11 = ℎ22 = 1,ℎ12 = ℎ21 = 0 

4. Reference Frame MV: In AV1, the set of collocated motion vectors is generated by 
scanning through multiple reference frames. For each reference frame, a linear, temporal 
scaling is applied to project the scaled motion vectors of the reference frame to an 8x8 
block in the current frame. This forms a motion field, which can be used in the derivation 
process of the reference motion vector stack to find more effective motion prediction 
candidates [8]. 

5. Dual filter: In AV1, interpolation filter types can be signalled separately for the horizontal 

and vertical directions. There are three types of interpolation filters (Regular, Smooth, 
Sharp) which can be determined in the encoder for block sizes greater than or equal to 
8x8. There are only two interpolation filter types (no Sharp type) for sub8x8 blocks. 

6. Extended reference set: The reference frame types are extended from 3 in VP9 to 7 in 
AV1. This allows a more flexible selection of reference frames for different blocks within a 
frame [9]. 

In AV1, a set of extended compound modes is also adopted to improve the quality of 
compound prediction. Five extended compound modes are supported in AV1 [10]. For these 
extended compound modes, the final prediction samples are generated using the following 
equation: 

𝑃(𝑥, 𝑦) = 𝜔 ∙ 𝑃0(𝑥, 𝑦) + (1 − 𝜔) ∙ 𝑃1(𝑥, 𝑦) 

where 𝜔 is a weight value from a look-up table, and can be either block-level (e.g., distance-
weighted compound) or pixel-level (e.g., difference-weighted compound). 𝑃0  and 𝑃1  are the 
prediction samples from the first and the second reference frames, respective ly. Note that the 
second reference frame here can refer to the current frame to support the inter -intra 
compound modes that are supported in AV1. 

7. Distance-weighted compound: in this compound mode, prediction samples from both 
reference frames are weighted based on their relative distance (calculated by their 
associated OrderHints value) to the current frame. A fixed look-up table is provided to 
decide the block-level weights for both predictions. 

8. Inter-inter wedge: each block is further partitioned into two parts based on a codebook 
of size 16, where each entry of the codebook defines a specific partitioning long oblique 
angle within a block. Each part is mainly generated by a motion vector from one of the 
reference frames, and soft-cliff-shaped masks are defined to smoothly blend the two 
predictions along the partitioning boundary. 

9. Inter-intra wedge: this mode is similar to the inter-inter wedge mode and uses the same 
codebook of wedge shapes, with the main difference that, while one of the predictors is 
generated using motion information, the other predictor is generated with a specific intra 
prediction mode. Four intra prediction modes are supported in this mode for generating 
the intra prediction component: DC, SMOOTH, VER, HOR. 

10. Smooth inter-intra mode: This mode accounts for a smoothly decaying pattern with 
direction of (intra) pixel extrapolation; the weights are a function of the intra modes, block 
sizes, and a primitive 64-tap 1D decaying function. The weight maps are created such that 
the intra-prediction samples are weighted more heavily towards the block boundary to the 



top and left neighbors, and inter-prediction samples are weighted more heavily towards 
the bottom/right corner of the block. 

11. Difference-weighted compound: the weight value for each pixel is calculated based on 
the absolute pixel difference between the two reference frames. A sign bit is signaled to 
indicate that either 𝜔 or 1 − 𝜔 should be applied along with the prediction from the first 
reference frame. This mode allows the encoder to pick the prediction sample from one of 
the reference frames when the pixel difference is large.  

2.4 Transform tools 
Several transforms are supported for the coding of residuals in AV1 in addition to those 

supported by VP9. In particular, AV1 also supports: 

1. FlipADST and identity transform: This extended set of transforms (along with DCT and 
ADST in VP9) provides more flexibility to AV1 to adapt to local residual signals for coding 
coefficients more efficiently. The identity transform, especially, is an important tool for 
coding screen content, where fine textual regions can benefit from transform-free 
operations to preserve their edge information [11][12]. 

2. 64x64 transform: AV1 extends the maximum transform size from 32x32 (as in VP9) to 
64x64. In addition, AV1 also allows rectangular transforms, recursive transform 
partitioning, as well as up to two levels of the transform split from the associated block. 
Only DCT is available for the 64x64 transform size. 

2.5 In-loop filters 

Several in-loop filters are supported in AV1. In particular, AV1 supports: 

1. Constrained Directional Enhancement Filter (CDEF) : the CDEF allows the codec to 

apply a nonlinear deringing filter while preserving edges. It operates in 8x8 units, where 
non-separable 5x5 directional filters are applied to estimate the direction, with a selection 
from eight predefined directions combined with options for rotation and reflections.  

 
 

Figure 7. An illustration of the preset directions for CDEF. ‘d=4’ is a counterclockwise 
rotation of the left diagram (d=0) by 90 degrees. ‘d=3’ is a vertical reflection of the middle 
diagram (d=1). ‘d=5’ is a clockwise rotation of the middle diagram by 90 degrees. ‘d=7’ is 



a vertical reflection of ‘d=5’. ‘d=6’ is a counterclockwise rotation of the right diagram (d = 2) 
by 90 degrees [3]. 

The pixel f iltering operation involves primary and secondary filters where the primary 
filtering follows the direction d and the secondary filter is operated with both plus and minus 
45-degree apart from d. In the frame header, up to eight groups of filter parameters can 
be signaled, and each 64x64 block region can select one group from the frame header to 
perform filtering with the associated filter parameters. The final f iltered samples are 
generated using 

𝑃𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 (𝑥, 𝑦) = 𝑃(𝑥, 𝑦) + ∑ 𝜔𝑚,𝑛
𝑃

𝑚,𝑛

∙ 𝑓(𝑃(𝑚, 𝑛) − 𝑃(𝑥, 𝑦), 𝑆𝑃, 𝐷 𝑃) + ∑𝜔𝑚,𝑛
𝑆

𝑚,𝑛

∙ 𝑓(𝑃(𝑚, 𝑛) − 𝑃(𝑥, 𝑦), 𝑆𝑆 , 𝐷𝑆) 

Where 𝑃(𝑥, 𝑦)  represents the pre-filtered samples, 𝜔𝑚,𝑛
𝑃  and 𝜔𝑚,𝑛

𝑆  represent the filter 

coefficients for the primary and secondary filters, respectively. 𝑓(∙) represents a nonlinear 
function which de-emphasizes neighboring samples with a large difference of sample 

values between the unfiltered samples with strengths {𝑆𝑃, 𝑆𝑆 } and damping factors {𝐷 𝑃,𝐷 𝑆} 
as control parameters for both the primary and secondary filters [13]. Note that it is allowed 
to signal a separate set of strengths and damping factors for the combined chroma 
components. 

2. Loop restoration filters: the loop restoration filter is applied to 64x64, 128x128, or 
256x256 loop restoration units (LRU), which is the basic unit sharing the same signaled 
parameters. For each LRU, encoders can select to either skip filtering, or select one from 
the two filter types: Wiener filter and self -guided filter. The Wiener filter uses a symmetric 
and separable filter design with 7/5/3-tap filters, and hence the coefficients signaled in the 
bitstream can be reduced by half (3/2/1). For self -guided filters, two simple denoising filters 
with support of 3x3 and 5x5 samples are applied. This is done firstly to generate two 
denoised versions (namely 𝑅1 and 𝑅2) of the post-CDEF images (denoted as 𝑅), where 
the associated noise parameters are signalled in the bitstream. Finally, the filter output is 
generated by 𝑅 + 𝛼 ∙ (𝑅1 − 𝑅) + 𝛽 ∙ (𝑅2 − 𝑅), where 𝛼 and 𝛽 are signalled in the bitstream 
[14]. 

3 Test Results 

3.1 Settings 

In the following results, testing is done on the objective-1-fast video set [15], a video test set that 
was selected during the development of the AV1 standard. This test set includes 30 sequences 
(eleven 1080p, seven 720p, seven 360p, and five synthetic videos). libaom-research is a branch 
which was forked off from the master branch in June 2020, intended to be  the codebase for 
research purposes and for future development beyond the AV1 specification. The test conditions 
use single-pass encoding with a static mini-GOP structure and size of 16 frames. The libaom-
research branch also includes other software optimizations, code clean-ups, encoder speed-ups 
[15], as well as software documentation. In this document, an early version of libaom-research 
(commit# 3696422f1 [17]) was chosen as the software to test, which is AV1-compatible. QP 
values are selected to be equal to [23, 31, 39, 47, 55, 63] 1 with 16-bit internal pipeline and 

 
1 These values correspond to a quantizer value in the context of the AV1 specification equal to 
4*QP. 



Random-Access configuration [18]. BD-rate values of frame-averaged PSNR, SSIM, and VMAF 
are reported as benchmarks to evaluate the coding performance of each tool. The quality metrics 
are calculated using libvmaf-v1.5.1 [19]. The detailed test results for the individual tools and 
sequences can be found in [20]. 

3.2 Tool-on tests 

Figure 8 shows the encoder configuration of each test. In tool-on tests, one tool is enabled at a 
time while all other tools are disabled. Test 0 is a baseline test where all AV1 tools are disabled.  
Note that the inter tools are tested with ‘OrderHint’ enabled in the encoder configuration. 
‘OrderHint’ represents a relative temporal position between the current frame and its references. 
Bi-directional compound modes are enabled when ‘order -hint’ is enabled in this version of the 
libaom software, in order to measure the coding performance of some inter tools correctly [22]. 

 

 

Figure 8. List of tests with their associated encoder configuration for tool-on tests 

Sample command line: 

--cpu-used=0 --passes=1 --threads=1 --lag-in-frames=19 --auto-alt-ref=1 --min-gf-interval=16 --max-gf-interval=16 --

gf-min-pyr-height=4 --gf-max-pyr-height=4 --kf-min-dist=65 --kf-max-dist=65 --use-fixed-qp-offsets=1 --deltaq-mode=0 

--enable-tpl-model=0 --end-usage=q --enable-keyframe-filtering=0 --test-decode=fatal --sb-size=64 --max-partition-

size=64 --min-partition-size=8 --enable-rect-partitions=0 --enable-ab-partitions=0 --enable-1to4-partitions=0 --enable-

angle-delta=0 --enable-paeth-intra=0 --enable-smooth-intra=0 --enable-intra-edge-filter=0 --enable-filter-intra=0 --

enable-intrabc=0 --enable-cfl-intra=0 --enable-palette=0 --enable-flip-idtx=0 --enable-tx64=1 --reduced-tx-type-set=1 -

-reduced-reference-set=1 --enable-obmc=0 --enable-warped-motion=0 --enable-global-motion=0 --enable-ref-frame-

mvs=0 --enable-dual-filter=0 --enable-order-hint=0 --enable-onesided-comp=0 --enable-masked-comp=0 --enable-

diff-wtd-comp=0 --enable-interinter-wedge=0 --enable-dist-wtd-comp=0 --enable-interintra-comp=0 --enable-interintra-

wedge=0 --enable-smooth-interintra=0 --enable-cdef=0 --enable-restoration=0 --disable-trellis-quant=0 --limit=60 --
skip=0 --cq-level=23 --use-16bit-internal --bit-depth=8 --input-bit-depth=8 --i420 --psnr --verbose --ivf -o output.ivf 

input.y4m 



3.2.1 Partitioning tools 

This category includes five tests listed in Figure 9. The baseline configuration in this category 
includes maximum SB size of 64x64, minimum-partition-size=8 (disallow blocks smaller than 8x8), 
and only the square partition is enabled. In VP9, rectangular partitions are supported as well as 
sub8x8 partitions but with a constraint that all sub8x8 partitions share the same reference frame 
type in case of inter blocks. Note that the AB-partition and the 1-to-4 partition are derivative 
partitioning types of the rectangular partition, and hence the rectangular partition is also enabled 
for the associated tests. The importance of the sub8x8 partition should be highlighted by  
additionally showing its impact on the synthetic videos. In the test of ‘minimum-partition-size=4’, 
the results show -7.14%/-1.41%/-4.38% coding gain on PSNR-Y/SSIM/VMAF on the five synthetic 
videos in the objective-1-fast test set. 
 

 

PSNR-Y SSIM VMAF

enable-128x128-superblock -0.43% -0.77% -0.92%

enable-4x4-partition-size -1.89% -0.32% -1.06%

enable-rect-partitions -3.41% -3.98% -3.59%

enable-ab-partitions -0.43% -0.35% -0.48%

enable-1to4-partitions -0.55% -0.86% -0.68%

-4.50%

-4.00%

-3.50%

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

Partitioning tools: BD-rate%



 

Figure 9. Tool-on test results for partitioning tools 

3.2.2 Intra coding tools 

Figure 10 shows the coding performance of non-screen-content-coding (SCC) intra tools. The 
most significant tool in this category is the intra angle delta, which provides high coding gain with 
relatively low increase in runtime. For Chroma from Luma (CfL), although it only shows marginal 
coding gains on luma-based quality metrics, it provides high coding gain on chroma-based quality 
metrics (e.g., -10.03%/-9.87% on PSNR-U/PSNR-V). In addition, CfL shows significant coding 
gain on both natural and synthetic videos. From the test ‘enable-all-intra’, it can also be observed 
that around 73.5% of the total coding gain is preserved, showing that the interaction among coding 
tools in this category is modest. 

EncT DecT

enable-128x128-superblock 117.07% 96.60%

enable-4x4-partition-size 109.33% 95.95%

enable-rect-partitions 153.44% 95.04%

enable-ab-partitions 103.71% 99.57%

enable-1to4-partitions 112.75% 101.29%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

Partitioning tools: Runtime%



 

 

PSNR-Y SSIM VMAF

enable-angle-delta -2.42% -2.61% -2.70%

enable-paeth-intra -0.14% -0.18% -0.37%

enable-smooth-intra -0.90% -1.02% -1.45%

enable-intra-edge-filter -0.36% -0.42% -0.41%

enable-filter-intra -0.77% -1.07% -1.91%

enable-all-intra -3.50% -4.01% -4.68%

enable-cfl-intra -0.36% -0.16% -0.33%

-5.00%

-4.50%

-4.00%

-3.50%

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

Intra coding tools - BD-rate%

EncT DecT

enable-angle-delta 103.74% 101.31%

enable-paeth-intra 101.95% 100.56%

enable-smooth-intra 104.63% 103.21%

enable-intra-edge-filter 102.47% 102.62%

enable-filter-intra 109.62% 103.36%

enable-all-intra 115.41% 105.98%

enable-cfl-intra 101.04% 101.11%

90.00%

95.00%

100.00%

105.00%

110.00%

115.00%

120.00%

Intra coding tools: Runtime%



Figure 10. Tool-on test results for non-SCC intra coding tools 

3.2.3 SCC tools 

It should be noted that there is a screen content detection algorithm used to detect whether the 
to-be-encoded frames are screen content or not, which specifically determines the two frame-
level syntax elements ‘allow_screen_content_tools’ (the top-level flag for both palette and intra 
block copy) and ‘allow_intrabc’ (flag for intra block copy) using separate threshold values. In these 
tests, only Minecraft and Wikipedia out of the five synthetic videos (along with Life, DOTA2, 
StarCraft) are classified to allow screen content tools, while only Wikipedia is detected with intra 
block copy enabled. Figure 11 shows the averaged coding gain on the five synthetic videos. For 
intra block copy, it provides -24.03%/-24.80%/-25.67% on PSNR-Y/SSIM/VMAF BD-rate savings 
on Wikipedia. 

 

 

PSNR-Y SSIM VMAF

enable-intrabc -4.81% -4.96% -5.13%

enable-palette -6.47% -4.06% -4.93%

-7.00%

-6.00%

-5.00%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

SCC tools: BD-Rate%

EncT DecT

enable-intrabc 102.75% 101.62%

enable-palette 100.77% 103.18%

99.50%

100.00%

100.50%

101.00%

101.50%

102.00%

102.50%

103.00%

103.50%

SCC tools: Runtime%



Figure 11. Tool-on test results for SCC tools 

3.2.4 Inter tools 

Figure 12 shows the coding performance of inter tools. Note that the inter tools are tested with 
‘OrderHint’ enabled in the encoder configuration. In the ‘reduced-reference-set’ test, the number 
of allowed combinations for reference frame selection is limited to 4 single-directional and 7 bi-
directional compound modes, which greatly reduces the total number of combinations the encoder 
needs to try. Hence, the reduction in encoder runtime is significant. For global motion, the encoder 
needs to invoke a RANSAC-based, frame-level algorithm to find the parameters of the affine 
model against each reference frame, and hence there is a significant amount of encoder runtime 
increase when global motion is enabled. The coding performance of global motion is highly 
sequence dependent. It is observed that -8.61%/-10.90%/-12.16% (PSNR-Y/SSIM/VMAF) coding 
gain is achieved for the sequence ‘BlueSky’, while its effect on other sequences is minor. 

 

PSNR-Y SSIM VMAF

enable-obmc -1.31% -1.08% -0.64%

enable-warped-motion -1.21% -1.26% -1.44%

enable-global-motion -0.31% -0.38% -0.57%

enable-reference-frame-mvs -1.06% -1.33% -1.39%

enable-dual-filter -0.13% 0.09% 0.09%

disable-reduced-reference-set -0.83% -0.68% -0.59%

-1.60%

-1.40%

-1.20%

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

0.20%

Inter tools: BD-rate%



 

Figure 12. Tool-on test results for inter tools 

3.2.5 Inter tools: extended compound modes 

For the extended compound modes, there are five coding tools tested in this category. The ‘one-
sided compound mode’ refers to the compound modes where both reference frames are from the 
same temporal direction. For the masked compound mode and the inter-intra compound modes, 
these are intended to be combined tests of {difference-weighted, inter-inter wedge} and {inter-
intra wedge, smooth inter-intra}. In the tool-on tests all tools are disabled by default, since they 
have negligible impact on coding performance. In this category, both inter-inter wedge and inter-
intra wedge modes contribute higher coding gain than other coding tools. The smooth inter-intra 
mode also provides high coding gain given its relatively lower encoding runtime increase. 

EncT DecT

enable-obmc 118.47% 106.40%

enable-warped-motion 102.79% 101.44%

enable-global-motion 135.68% 101.00%

enable-reference-frame-mvs 118.06% 117.48%

enable-dual-filter 102.68% 99.57%

disable-reduced-reference-set 140.98% 99.14%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

Inter tools: Runtime%



 

 

PSNR-Y SSIM VMAF

enable-one-sided-comp -0.38% -0.17% 0.06%

enable-masked-comp -0.01% 0.00% -0.11%

enable-diff-wtd-comp -0.65% -0.30% 0.25%

enable-inter-inter-wedge -1.64% -0.77% -0.51%

enable-dist-wtd-comp -0.58% -0.29% 0.30%

enable-all-inter-comp -1.96% -1.00% -0.45%

enable-inter-intra-comp -0.01% -0.02% -0.09%

enable-inter-intra-wedge -1.20% -0.84% -0.47%

enable-smooth-inter-intra -1.12% -0.90% 0.13%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

0.50%

Extended compound modes: BD-rate%

EncT DecT

enable-one-sided-comp 104.87% 100.60%

enable-masked-comp 100.16% 102.58%

enable-diff-wtd-comp 110.48% 95.82%

enable-inter-inter-wedge 128.48% 99.47%

enable-dist-wtd-comp 107.13% 97.99%

enable-all-inter-comp 137.16% 96.84%

enable-inter-intra-comp 100.23% 100.57%

enable-inter-intra-wedge 126.92% 101.36%

enable-smooth-inter-intra 110.99% 100.24%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

Extended compound modes: Runtime%



Figure 13. Tool-on test results for extended compound tools 

3.2.6 Transform tools 

Figure 14 shows the coding performance of transform tools. In AV1, for transform blocks greater 
than 32x32, only DCT is employed. For 32x32 transform blocks, only DCT and the identity 
transforms are employed for inter blocks while only DCT is used for intra blocks. In the baseline, 
the ‘reduced-tx-type-set’ is set to 1. This indicates that only the DCT and identity transform for 
inter blocks of other sizes are used, while the set of VP9 transforms (combination of ADSt and 
DCT) plus identity transform are available for intra blocks of other sizes . ‘disable-reduced-tx-type-
set’ additionally tests the coding performance of allowing ADST for chroma blocks on top of the 
VP9 setup. ‘enable-tx64’ refers to enabling the transform block sizes of 32x64, 64x32, and 64x64. 

 

 

Figure 14. Tool-on test results for transform tools 

PSNR-Y SSIM VMAF

enable-flip-idtx -1.30% -0.10% -0.13%

disable-reduced-tx-type-set -1.24% -0.76% -1.46%

enable-tx64 -2.32% -2.93% -2.43%

-3.50%

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

Transform tools: BD-Rate%

EncT DecT

enable-flip-idtx 103.33% 99.42%

disable-reduced-tx-type-set 103.44% 98.30%

enable-tx64 106.15% 95.78%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

104.00%

106.00%

108.00%

Transform tools: Runtime%



3.2.7 In-loop filters 

Figure 15 shows the coding performance of both CDEF and the Loop Restoration filters in AV1. 
CDEF and Loop Restoration filters provide -2.23%/-2.80% BD-rate saving on PSNR-Y, and -
1.22%/-1.36% BD-rate saving on SSIM respectively. When both tools are enabled simultaneously, 
there is overlap in coding gain where -3.90% BD-rate saving on PSNR-Y and -2.16% BD-rate 
saving on SSIM is observed. It is also observed that CDEF endures BD-rate impact on VMAF, 
and it is reported that when CDEF is enabled compared with the baseline, the reconstructed 
frames tend to be blurrier, causing the VMAF score to be lower [23]. 

 

 

Figure 15. Tool-on test results for in-loop filters 

PSNR-Y SSIM VMAF

enable-cdef -2.23% -1.22% 2.33%

enable-restoration-filter -2.80% -1.36% -1.56%

enable-cdef-restoration-filter -3.90% -2.16% -2.65%

-5.00%

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

In-loop filters: BD-rate%

EncT DecT

enable-cdef 102.92% 112.25%

enable-restoration-filter 112.12% 123.95%

enable-cdef-restoration-filter 112.69% 127.52%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

In-loop filters: Runtime%



3.3 Tool-off tests 

The software version used in the tool-off tests is the same as used in the tool-on testing, while 
the baseline of the tool-off test enables all AV1 coding tools but disables the tool to be tested 
individually in each test. In contrast to the tool-on tests, it is expected to observe BD-rate increases 
and runtime decreases in the tool-off tests. 

 

Figure 16. List of tests with associated encoder configuration for tool-off tests 

Sample command line: 

--codec=av1 --ivf --frame-parallel=0 --tile-columns=0 --threads=1 --use-16bit-internal --passes=1 --lag-in-

frames=19 --auto-alt-ref=1 --min-gf-interval=16 --max-gf-interval=16 --gf-min-pyr-height=4 --gf-max-pyr-

height=4 --kf-min-dist=65 --kf-max-dist=65 --use-fixed-qp-offsets=1 --deltaq-mode=0 --enable-tpl-
model=0 --end-usage=q --enable-keyframe-filtering=0 --cq-level=63 --limit=60 --cpu-used=0 --

cfg=Sample.cfg -o output.ivf input.y4m 

where the Sample.cfg contains the following parameters to control:  
 
super_block_size = 128 
max_partition_size = 128 
min_partition_size = 4 
disable_rect_partition_type = 0 
disable_ab_partition_type = 0 
disable_1to4_partition_type = 0 
disable_intra_angle_delta = 0 
disable_paeth_intra = 0 
disable_smooth_intra = 0 
disable_intra_edge_filter = 0 
disable_filter_intra = 0 
disable_intrabc = 0 
disable_cfl = 0 
disable_palette = 0 
disable_flip_idtx = 0 
disable_tx_64x64 = 0 
reduced_tx_type_set = 0 



reduced_reference_set = 0 
disable_obmc = 0 
disable_warp_motion = 0 
disable_global_motion = 0 
disable_ref_frame_mv = 0 
disable_dual_filter = 0 
disable_one_sided_comp = 0 
disable_masked_comp = 0 
disable_diff_wtd_comp = 0 
disable_inter_inter_wedge = 0 
disable_dist_wtd_comp = 0 
disable_inter_intra_comp = 0 
disable_inter_intra_wedge = 0 
disable_smooth_inter_intra = 0 
disable_cdef = 0 
disable_lr = 0 

3.3.1 Partitioning tools 

Figure 17 shows the coding performance of the partitioning tools for tool-off testing. Like the 
results from the tool-on tests on partitioning tools, rectangular partitioning contributes most of the 
coding gain. In addition, the effect of ‘disable-4x4-partition-size’ (which in fact disables all sub8x8 
partitions), shows 5.06%/3.29%/3.38% (PSNR-Y/SSIM/VMAF) BD-rate increase for the synthetic 
video class. 
 

 

PSNR-Y SSIM VMAF

disable-128x128-superblock 0.72% 1.05% 1.27%

disable-4x4-partition-size 1.36% 0.44% 0.75%

disable-rect-partitions 5.11% 5.29% 5.06%

disable-ab-partitions 0.30% 0.29% 0.45%

disable-1to4-partitions 0.75% 0.75% 0.64%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

Partitioning tools: BD-rate%



 

Figure 17. Tool-off test results for partitioning tools 

3.3.2 Intra coding tools 

Figure 18 shows the coding performance of (non-SCC) intra coding tools. It can be observed that 
the coding gain of  the tools is reduced compared to the results of tool-on tests. For paeth-intra 
prediction, it shows smaller changes in coding performance and runtime at this baseline. For filter 
intra, the coding gain is approximately half of the gain in the corresponding tool-on test, and for 
smooth intra, its coding performance is reduced to 0.1% ~ 0.2%. For CfL, the PSNR-U/V BD-rate 
performance is 12.11%/8.97%, respectively. 

EncT DecT

disable-128x128-superblock 85.75% 102.66%

disable-4x4-partition-size 95.25% 98.52%

disable-rect-partitions 66.57% 101.99%

disable-ab-partitions 95.54% 99.76%

disable-1to4-partitions 95.35% 99.09%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Partitioning tools: Runtime%



 

 
Figure 18. Tool-off test results for non-SCC intra tools 

PSNR-Y SSIM VMAF

disable-angle-delta 1.59% 1.81% 1.69%

disable-paeth-intra 0.03% -0.07% 0.01%

disable-smooth-intra 0.23% 0.18% 0.12%

disable-intra-edge-filter 0.23% 0.14% 0.21%

disable-filter-intra 0.41% 0.39% 0.72%

disable-cfl-intra 0.25% -0.06% -0.05%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

Intra Coding tools - BD-rate%

EncT DecT

disable-angle-delta 99.74% 99.07%

disable-paeth-intra 99.59% 99.10%

disable-smooth-intra 98.75% 99.57%

disable-intra-edge-filter 99.98% 100.03%

disable-filter-intra 98.87% 99.64%

disable-cfl-intra 100.40% 99.12%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

100.50%

101.00%

Intra coding tools - Runtime%



3.3.3 SCC tools 

Figure 19 shows the coding performance of the SCC tools on the five synthetic videos in the 
objective-1-fast video set. It can be observed that for IBC, there is a larger impact on the Wikipedia 
sequence, i.e. 30% ~ 33%, compared to the tool-on test, mainly due to the sub8x8 partitions being 
enabled in the current baseline. Like in the tool-on test, Palette modes are only effective on 
Minecraft and Wikipedia showing 4.7% BD-rate impact on average for PSNR. This implies that 
Palette mode may have larger overlap with IBC in this context, and it shows relatively lower coding 
gain in terms of SSIM and VMAF. 

 

 

Figure 19. Tool-off test results for SCC tools 

PSNR-Y SSIM VMAF

disable-intrabc 5.93% 6.24% 6.80%

disable-palette 1.92% 0.36% 0.89%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

SCC tools: BD-Rate%

EncT DecT

disable-intrabc 97.18% 99.17%

disable-palette 99.17% 100.52%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

SCC tools: Runtime%



3.3.4 Inter tools 

Figure 20 shows the coding performance of the inter tools. It can be observed that for global -
motion and for the dual-filter, their coding impact is limited while they still contribute 6.24% and 
2.23% of the encoding runtime, respectively. Also note that for OBMC and local warp, their coding 
performance is greatly reduced (from -4.24% and -2.55%, respectively) compared to the tool-on 
cases. The ‘reduce-reference-frame-set’ allows a limited amount of combination of reference 
frames (4 single-reference, 4 inter-intra modes, 7 compound modes) to simplify the encoder 
search. 

 

PSNR-Y SSIM VMAF

disable-obmc 0.44% 0.48% 0.30%

disable-warped-motion 0.86% 1.00% 0.89%

disable-global-motion 0.06% 0.00% -0.09%

disable-reference-frame-mvs 0.77% 0.93% 0.87%

disable-dual-filter -0.02% -0.13% 0.01%

reduce-reference-frame-set 0.81% 0.63% 0.61%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

Inter tools: BD-rate%



 

Figure 20. Tool-off test results for inter tools 

3.3.5 Inter tools: extended compound modes 

From the tool-off test results on the extended compound modes, it can be observed that the ‘inter-
intra wedge’, ‘difference-weighted compound’, and ‘smooth inter-intra’ modes are the more 
effective coding tools in this category. Both the ‘inter-intra wedge’ and ‘distance-weighted 
compound’ modes show very limited coding gain. Note that the ‘masked compound’ and ‘inter-
intra compound’ modes are combined together in a single test, so their coding gain appears to be 
higher than other tools that were tested on their own. 

EncT DecT

disable-obmc 91.87% 98.71%

disable-warped-motion 99.16% 98.51%

disable-global-motion 93.76% 97.59%

disable-reference-frame-mvs 88.96% 94.43%

disable-dual-filter 97.77% 100.48%

reduce-reference-frame-set 77.59% 99.75%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Inter tools: Runtime%



 

Figure 21. Tool-off test results for extended compound modes 

PSNR-Y SSIM VMAF

disable-one-sided-comp 0.17% 0.09% 0.10%

disable-masked-comp 0.34% 0.17% 0.11%

disable-diff-wtd-comp 0.19% 0.10% 0.08%

disable-inter-inter-wedge 0.22% 0.09% 0.12%

disable-dist-wtd-comp 0.02% 0.02% -0.09%

disable-inter-intra-comp 0.33% 0.33% 0.01%

disable-inter-intra-wedge 0.05% 0.04% 0.08%

disable-smooth-inter-intra 0.24% 0.28% -0.01%

-0.15%
-0.10%
-0.05%
0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%
0.40%

Extended compound modes: BD-rate%

EncT DecT

disable-one-sided-comp 95.01% 99.81%

disable-masked-comp 88.29% 101.25%

disable-diff-wtd-comp 96.23% 100.02%

disable-inter-inter-wedge 92.48% 98.79%

disable-dist-wtd-comp 97.45% 99.76%

disable-inter-intra-comp 93.39% 99.60%

disable-inter-intra-wedge 96.22% 100.00%

disable-smooth-inter-intra 100.21% 98.87%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

Extended compound modes: Runtime%



3.3.6 Transform tools 

In the testing of the ‘f lip and idtx’ transforms, majority of the coding impact comes from synthetic 
videos where the identity transform on top of enabling the sub8x8 partitioning can be a very helpful 
combination to improve coding efficiency. ‘Tx64’ is a helpful coding tool which contributes 3% ~ 
4% coding gain on 720p and 1080p videos. ‘reduced-tx-type-set’ limits inter blocks to use only 
the DCT and identity transforms, and limits the intra blocks to use ADST for b lock sizes less than 
32x32. It eliminates the selection of a variety of transform kernels for blocks smaller than or equal 
to 16x16. 

 

 
Figure 22. Tool-off test results for transform tools 

PSNR-Y SSIM VMAF

disable-flip-idtx 1.62% 0.42% 0.30%

disable-tx64 2.61% 3.38% 3.36%

reduced-tx-type-set 2.34% 1.40% 1.68%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

Transform tools: BD-Rate%

EncT DecT

disable-flip-idtx 95.12% 99.78%

disable-tx64 93.01% 100.53%

reduced-tx-type-set 94.04% 100.57%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

Transform tools: Runtime%



3.3.7 In-loop filters 

Both CDEF and LR show relatively low coding gain in the tool-off testing. LR shows moderate 
coding gain of 1.52% on PSNR-Y BD-rate, while it shows 5.94% impact on VMAF BD-rate. 

 

 

Figure 23. Tool-off test results for in-loop filters 
  

PSNR-Y SSIM VMAF

disable-cdef 0.60% 0.94% 0.66%

disable-restoration-filter 1.52% -1.59% 5.94%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

In-loop filters: BD-rate%

EncT DecT

disable-cdef 100.27% 96.23%

disable-restoration-filter 97.96% 90.62%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

In-loop filters: Runtime%



3.4 Summary 

This document provides a brief description on a set of AV1 coding tools and compiles the testing 
results from the AOM testing sub-group. It should be highlighted that the test is not exhaustive 
and only tools categorized as more critical or of interest were analyzed. In particular, the 
performance of some coding tools, such as reference motion vector derivation [22] and the M-ary 
symbol-based arithmetic coding [25], which also show improvement compared to their 
predecessor designs, were not included since it was found to be diff icult or impossible to switch 
them off in the codebase and evaluate them. Other AV1 coding tools, such as frame super-
resolution [26], f ilm grain synthesis [27], reference frame re-sampling, and tile groups require 
specific test conditions that would reflect specific application scenarios to demonstrate their 
benefits. Hence, their testing is beyond the scope of this document. 

4 References 

[1] P. de Rivaz, J. Haughton, A. Grange, L. Quillio, “AV1 Bitstream & Decoding Process 

Specification,” http://aomedia.org/av1/specification/ 

[2] Y. Chen et. al., “An Overview of Coding Tools in AV1: the First Video Codec from the 

Alliance for Open Media,” APSIPA Transactions on Signal and Information Processing, vol. 

9 (e6), pp. 1-15, 2020 

[3] J. Han et. al., “A Technical Overview of AV1,” Proceedings of the IEEE, vol. 109, no. 9, pp. 

1435-1462, Sept. 2021 

[4] Luc N. Trudeau, Nathan E. Egge and David Barr, “Predicting Chroma from Luma in AV1,” 

Data Compression Conference (DCC), 2017. 

[5] Y. Chen, D. Mukherjee, “Variable block-size overlapped block motion compensation in the 

next generation open-source video codec,” in IEEE Int. Conf. on Image Processing (ICIP), 

September 2017. 

[6] S. Parker, Y. Chen, D. Mukherjee, “Global and locally adaptive warped motion 

compensation in video compression,” in IEEE Int. Conf. on Image Processing (ICIP), 

September 2017.  

[7] https://gitlab.com/AOMediaCodec/SVT-AV1/-/tree/master/Docs 

[8] J. Han, J. Feng, Y. Teng, Y. Xu, J. Bankoski, “A motion vector entropy coding scheme 

based on motion field referencing for video compression,” in IEEE Int. Conf. on Image 

Processing (ICIP), September 2018. 

[9] Lin W. et al., “Efficient AV1 video coding using a multi-layer framework,” Data Compression 

Conference (DCC), March 2018. 

[10] J. Urvang et. al., “Novel inter and intra prediction tools under consideration for the emerging 

AV1 video codec,” in Proc. SPIE, Applications of Digital Image Processing XL, 2017.   

[11] J. Han, Y. Xu, and D. Mukherjee, “A butterfly structured design of the hybrid transform 

coding scheme,” in Proc. Picture Coding Symp. (PCS), Dec. 2013.  

[12] S. Parker et al., “On transform coding tools under development for VP10,” in Proc. SPIE, 

Applications of Digital Image Processing XXXIX, 2016. 

[13] S. Midtskogen, J.-M. Valin, “The AV1 Constrained Directional Enhancement Filter,” in Proc. 

IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), Apr. 2018. 

http://aomedia.org/av1/specification/
https://www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-information-processing
https://gitlab.com/AOMediaCodec/SVT-AV1/-/tree/master/Docs


[14] D. Mukherjee, S. Li, Y. Chen, A. Anis, S. Parker, and J. Bankoski, “A switchable loop -

restoration with side-information framework for the emerging AV1 video codec,” in Proc. 

IEEE Int. Conf. Image Process. (ICIP), Sep. 2017. 

[15] objective-1-fast video set, https://media.xiph.org/video/derf/objective-1-fast.tar.gz 

[16] Final updates on short-term tasks on libaom prior to AV2 research fork, 

https://groups.aomedia.org/g/wg-codec/files/libaom-updates/FinalShortTermTasksUpdate-

libaom.pdf 

[17] libaom-research, #3696422f12, 

https://aomedia.googlesource.com/aom/+/3696422f122e78e0f803e2d809e1b8f21a7d1aea 

[18] Random Access configuration in AV1 tool on/off testing, https://groups.aomedia.org/g/sg-

codec-testing/files/Meeting%20notes/TestingSG_meeting_notes_2020_06_12.pdf 

[19] libvmaf-v1.5.1, https://gitlab.com/m-ab-s/vmaf/-/tags/v1.5.1 

[20] AV1 Tool-on/off testing, https://groups.aomedia.org/g/sg-codec-

testing/files/AV1%20ToolOnOff%20Test 

[21] Allow disabling TX64 for AOM_IMG_FMT_I42016, https://aomedia-
review.googlesource.com/c/aom/+/115802 

[22] AV1 Tools on/off, https://groups.aomedia.org/g/sg-codec-
testing/files/AV1%20ToolOnOff%20Test/Netflix%20-%20Tools%20on-off%20study/2020-
10-22%20libaom%20tools%20on_off%20study%20-%20VMAF%20vs%20VMAFNEG%20-
%20order%20hint%20-%20Netflix.pdf 

[23] VMAF on AV1 Loop Filtering On/Off, https://groups.aomedia.org/g/sg-codec-
testing/files/AV1%20ToolOnOff%20Test/VMAF_on_AV1_On_Off_Tools_ZhiLi_Netflix.pdf  

[24] J. Han, Y. Xu, J. Bankoski, “A dynamic motion vector referencing scheme for video coding,” 
in IEEE Int. Conf. on Image Processing (ICIP), September 2016.  

[25] J.-M. Valin et al., “Daala: Building a next-generation video codec from unconventional 

technology,” in Proc. IEEE 18th Int. Workshop Multimedia Signal Process. (MMSP), Sep. 

2016.  

[26] U. Joshi, D. Mukherjee, Y. Chen, S. Parker, A. Grange, “In-loop frame super-resolution in 

AV1,” in Proc. Picture Coding Symp. (PCS), Nov. 2019.  

[27] A. Norkin and N. Birkbeck, “Film grain synthesis for AV1 video codec,” in Proc. Data 

Compress. Conf. (DCC), Mar. 2018. 

https://media.xiph.org/video/derf/objective-1-fast.tar.gz
https://groups.aomedia.org/g/wg-codec/files/libaom-updates/FinalShortTermTasksUpdate-libaom.pdf
https://groups.aomedia.org/g/wg-codec/files/libaom-updates/FinalShortTermTasksUpdate-libaom.pdf
https://aomedia.googlesource.com/aom/+/3696422f122e78e0f803e2d809e1b8f21a7d1aea
https://groups.aomedia.org/g/sg-codec-testing/files/Meeting%20notes/TestingSG_meeting_notes_2020_06_12.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/Meeting%20notes/TestingSG_meeting_notes_2020_06_12.pdf
https://gitlab.com/m-ab-s/vmaf/-/tags/v1.5.1
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test
https://aomedia-review.googlesource.com/c/aom/+/115802
https://aomedia-review.googlesource.com/c/aom/+/115802
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/Netflix%20-%20Tools%20on-off%20study/2020-10-22%20libaom%20tools%20on_off%20study%20-%20VMAF%20vs%20VMAFNEG%20-%20order%20hint%20-%20Netflix.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/Netflix%20-%20Tools%20on-off%20study/2020-10-22%20libaom%20tools%20on_off%20study%20-%20VMAF%20vs%20VMAFNEG%20-%20order%20hint%20-%20Netflix.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/Netflix%20-%20Tools%20on-off%20study/2020-10-22%20libaom%20tools%20on_off%20study%20-%20VMAF%20vs%20VMAFNEG%20-%20order%20hint%20-%20Netflix.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/Netflix%20-%20Tools%20on-off%20study/2020-10-22%20libaom%20tools%20on_off%20study%20-%20VMAF%20vs%20VMAFNEG%20-%20order%20hint%20-%20Netflix.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/VMAF_on_AV1_On_Off_Tools_ZhiLi_Netflix.pdf
https://groups.aomedia.org/g/sg-codec-testing/files/AV1%20ToolOnOff%20Test/VMAF_on_AV1_On_Off_Tools_ZhiLi_Netflix.pdf

