Page 4
Draft prETS 300 ???: Month YYYY

SA4-e (AH) Video SWG post 111-e (2020-11-24 - Online)
S4aV200572
24th November 2020

Agenda item:
6.X
Source:
Qualcomm Incorporated
Title:

[FS_XRTraffic] Updates to Traffic Modeling for XR Split Rendering
Document for
Discussion and Agreement
1 Introduction

During SA4#107 the New Study Item on “Feasibility Study on Extensions to Typical Traffic Characteristics” in S4-200334 was agreed and afterwards approved in by SA plenary #87 in SP-200054.

The objective of the study is as follows:

· Collect and document traffic characteristics including for different services, but not limited to

· Downlink data rate ranges

· Uplink data rate ranges

· Maximum packet delay budget in uplink and downlink

· Maximum Packet Error Rate,

· Maximum Round Trip Time

· Traffic Characteristics on IP level in uplink and downlink in terms of packet sizes, and temporal characteristics. XR Services and Cloud Gaming based on the initial information documented in TR26.928 including.

· Collect additional information, such as codecs and protocols in use.

· Provide the information from above at least for the following services (initial services)

· Viewport independent 6DoF Streaming

· Viewport dependent 6DoF Streaming

· Simple Single Buffer split rendering for online cloud gaming

· Cloud gaming

· MTSI-based XR conversational services

· Identify additional relevant XR and other media services and document their traffic characteristics

· Document additional developments in the industry that impact traffic characteristics in future networks

· Identify the applicability of existing 5QIs/PQIs for such services and potentially identify requirements for new 5QIs/PQIs or QoS related parameters.

· Communicate with other 3GPP groups and external organizations on relevant aspects related to the study.

This document provides updates on the proposed modelling for split rendering and discussion simplifications for RAN1 evaluation.
2 Proposed Updates to System Design
6.2
System Design for Split Rendering

6.2.1
Overview

The system design for split rendering follows the discussion and requirements from TR26.928, clause 6.2.5. The architecture us shown in Figure 1.

[image: image1]
Raster-based split rendering refers to the case where the XR Server runs an XR engine to generate the XR Scene based on information coming from an XR device. The XR Server rasterizes the XR viewport and does XR pre-rendering.

According to Figure Figure 1, the viewport is pre-dominantly rendered in the XR server, but the device is able to do latest pose correction, for example by asynchronuous time-warping (see clause 4.1 of TR26.928) or other XR pose correction to address changes in the pose.

-
XR graphics workload is split into rendering workload on a powerful XR server (in the cloud or the edge) and pose correction (such as ATW) on the XR device

-
Low motion-to-photon latency is preserved via on device Asynchronous Time Warping (ATW) or other pose correction methods.

The following call flow highlights the key steps:

1)
An XR Device connects to the network and joins XR application

a)
Sends static device information and capabilities (supported decoders, viewport)

2)
Based on this information, the XR server sets up encoders and formats

3)
Loop

a)
XR Device collects XR pose (or a predicted XR pose)

b)
XR Pose is sent to XR Server

c)
The XR Server uses the pose to pre-render the XR viewport

d)
XR Viewport is encoded with 2D media encoders

e)
The compressed media is sent to XR device along with XR pose that it was rendered for

f)
The XR device decompresses video

g)
The XR device uses the XR pose provided with the video frame and the actual XR pose for an improved prediction using and to correct the local pose, e.g. using ATW.

According to TR 26.928, clause 4.2.2, the relevant processing and delay components are summarized as follows:

· User interaction delay is defined as the time duration between the moment at which a user action is initiated and the time such an action is taken into account by the content creation engine. In the context of gaming, this is the time between the moment the user interacts with the game and the moment at which the game engine processes such a player response.

· Age of content is defined as the time duration between the moment a content is created and the time it is presented to the user. In the context of gaming, this is the time between the creation of a video frame by the game engine and the time at which the frame is finally presented to the player.

The roundtrip interaction delay is therefore the sum of the Age of Content and the User Interaction Delay. If part of the rendering is done on an XR server and the service produces a frame buffer as rendering result of the state of the content, then for raster-based split rendering (as defined in clause 6.2.5) in cloud gaming applications, the following processes contribute to such a delay:

· User Interaction Delay (Pose and other interactions)

· capture of user interaction in game client,

· delivery of user interaction to the game engine, i.e. to the server (aka network delay),

· processing of user interaction by the game engine/server,

· Age of Content

· creation of one or several video buffers (e.g. one for each eye) by the game engine/server,

· encoding of the video buffers into a video stream frame,

· delivery of the video frame to the game client (a.k.a. network delay),

· decoding of the video frame by the game client,

· presentation of the video frame to the user (a.k.a. framerate delay).

As ATW is applied the motion-to-photon latency requirements (of at most 20 ms) are met by XR device internal processing. What determines the network requirements for split rendering is time of pose-to-render-to-photon and the roundtrip interaction delay. According to clause TR 26.928, clause 4.5, the permitted downlink latency is typically 50-60ms.

6.2.2
Considered Content Formats

Rasterized 3D scenes available in frame buffers (see clause 4.4 or TR 26.928) are provided by the XR engine and need to be encoded, distributed and decoded. According to TR 26.928, clause 4.2.1, relevant formats for frame buffers are 2k by 2k per eye, potentially even higher. Frame rates are expected to be at least 60fps, potentially higher up to 90 fps. The formats of frame buffers are regular texture video signals that are then directly rendered. As the processing is graphics centric, formats beyond commonly used 4:2:0 signals and YUV signals may be considered.

In practical considerations, the NVIDIA Encoding functions may be used. The parameters of such an encoder are documented here https://developer.nvidia.com/nvidia-video-codec-sdk.

6.2.3
Considered System Parameters

Based on the discussion on clause 2 and 3, several parameters are relevant for the overall system design.

· Game:

· Type of game
· state of game,
· multi-user actions, etc.
· User Interaction:

· 6DOF pose based on head and body movement,

· Game interactions by controllers
· Formats of rasterized video signal. Typical parameters are:

· 1.5K x 1.5K per eye at 60, 90, 120fps

· 2K x 2K at 60, 90, 120fps

· YUV 4:2:0 or 4:4:4
· Encoder configuration

· Codec: H.264/AVC or H.265/HEVC

· Bitrate: Bitrate setting to a specific value (e.g. 50 Mbit/s)

· Rate control: CBR, Capped VBR, Feedback based, CRF, QP

· Slice settings: 1 per frame, 1 per MB row, X per frame
· Intra settings and error resilience: Regular IDR, GDR Pattern, adaptive Intra, feedback based Intra, feedback based predication and ACK-based, feedback-based prediction and NACK based

· Latency settings: P pictures only, look-ahead units

· Complexity settings for encoder
· Content Delivery

· Slice to IP mapping: Fragmentation

· RTP-based time codes and packet numbering

· RTP/RTCP-based feedback ACK/NACK

· RTP/RTCP-based feedback on bitrate
· 5G System/RAN Configuration:

· QoS Settings (5QI): GBR, Latency, Loss Rate

· HARQ transmissions, scheduling, etc.

· Content Delivery Receiver configuration:

· Loss Detection: sequence numbers

· Delay/Latency handling

· Error Resilience

· ATW
· Quality Aspects
· Video quality (encoded)
· Lost data

· immersiveness
6.2.4
Proposed Assumptions and Simulation Parameters

It is proposed to only consider the following system parameters (some are striken):

· Game (details are tbd):

· Type of game
· state of game,
· multi-user actions, etc.
· User Interaction:

· 6DOF based on body/head movement,

· Game interactions

· Formats of rasterized video signal. Typical parameters are:

· 1.5K x 1.5K per eye at 60, 90, 120fps

· 2K x 2K at 60, 90, 120fps

· YUV 4:2:0 or 4:4:4
· Encoder configuration

· Codec: H.264/AVC or H.265/HEVC

· Rate control: CBR, Capped VBR, Feedback based, CRF, QP
· CBR: tbd
· CRF: 22, 25, 28, 31, 34
· Slice settings: 1 per frame, 1 per row, 8 per frame
· Intra settings and error resilience: Regular IDR, GDR Pattern, adaptive Intra, feedback based Intra, feedback based predication and ACK-based, feedback-based prediction and NACK based

· Latency settings: P pictures only, look-ahead units only 0 (for minimum latency)

· Complexity settings for encoders aligned with presets in x265
· Content Delivery

· Sending of eye buffers

· At the same time

· staggered

· Slice to IP mapping: Fragmentation

· RTP-based time codes and packet numbering

· RTP/RTCP-based feedback ACK/NACK

· RTP/RTCP-based feedback on bitrate
· RAN Configuration:

· QoS Settings (5QI): GBR, Latency, Loss Rate

· HARQ Handling, Scheduling

· Defined by RAN group

· Delay budget:

· Uplink streaming is considered to add at most 10ms

· Downlink streaming budget: 50ms, 100ms, 200ms

· Receiver configuration:

· Loss Detection: sequence numbers

· Delay/Latency handling: Slices received after the deadline are treated as lost.

· Error Concealment: Copy macroblock for lost ones

· Warping: is considered sufficient if within delay budget.
· Quality Aspects
· Video quality (encoded)
· Lost data

· immersiveness
6.2.5
Quality aspects

The video quality is impacted primarily be two factors:

· The coding artifacts based on encoding, determined for example by the PSNR.

· The artefacts due to lost packets and the resulting error propagation.

It is proposed to model quality for each simulation as a combination

· Average PSNR sent from encoding

· The percentage of damaged video area

· where a damaged macroblock is defined as

· If it is part of a slice that is lost for this transmission

· If it is correctly received, but it predicts from a wrong macroblock

· Macroblock is correct

· If it is received correctly and it predicts for a non-damaged macroblock

· Predicting from non-damaged macroblock means

· Spatial prediction is correct

· Temporal prediction is correct

· Recovering MBs done by Intra Refresh or by predicting from correct MBs again.
A potentially quality diagram would look as follows:

[image: image2]
The information could further be put into a single number as follows:

· A correct CTU gets assigned the PSNR of the encoded video

· An incorrect CTU (damaged/lost) gets assigned the PSNR of value 0 (other numbers?)

· The values are averaged across all CTUs.

The quality modelling from above is already quite complex. A simplified approach may be taken into account. Examples are:

· The percentage of lost IP packets. The limitation in this case is, that the impact of an IP packet loss is not taken into account to the visual content. Different IP packets may be quite different impact, for example how many macroblocks are affected by the loss.

· The percentage of lost slices based on fragmentation: This addresses the issue that a slice contains the same number of macroblocks. However, this disregards the impact of a slice to the overall quality
· The percentage of lost data that is contained in a slice: this aspect is quite meaningful in a sense that typically if a slice contains more bytes, its loss is more impactful to the overall quality. However, there are also limitations in this as intra slices are typically very large, also the impact on error propagation is unknown.
6.2.6
Additional Assumptions and Background on XR/Cloud Gaming Traffic model

6.2.6.1
Traffic source type

The traffic resource type for XR service is related to the application. To be specific, the traffic resource type refers to how the traffic is generated in the source end. For VR application, it refers to how the frames of two eyes are generated. It is assumed that there are two eye buffers and the frames for two eyes are generated independently for VR 3D video, assuming 2K resolution for the frames for each eye. To meet the latency requirement of VR video traffic, PDB for each frame is assumed as 10ms. The following two different types of VR video traffic are proposed regarding the frame arrival time in the case of X FPS, as illustrated in Figure 1.

· Traffic source type 1: every 1/X s, the packets of both eyes arrive at the same time for each frame.

· Traffic source type 2: every 1/(2*X) s, the packet of left eye and right eye arrive in turn, e.g. the packet of left eye arrives at odd frames, while the packet of right eye arrives at even frames.

For traffic source type 1, frames for both eyes arrive at the same time such that visual scenes for both eyes can be updated and presented simultaneously. In order for that, transmissions of frames for both eyes need to be within the same PDB, e.g. 10ms. Based on our observation, traffic source type 1 is one of the typical configurations for video streaming. The sum of frame sizes for both eyes is equal to the size of a packet in simulation.
For traffic source type 2, frames for two eyes arrive alternately. With respect to the visual signal from frames for one eye, it is refreshed every 16.67ms. Therefore, a frame for right eye is refreshed with a delay equal to 8.33ms after refreshing a frame for left eye, i.e. there is an 8.33ms delay for frames for right eye compared to frames for left eye. In this case, PDBs for transmissions of frames for different eyes are independent, i.e. PDB for frames for each eye is 10ms. Although the total delay budget for a visual scene from frames of two eyes is great than 10ms, people with a normal visual acuity will not perceive different refreshing times for two eyes when the frame rate is above 60 FPS.

[image: image3.emf]LRLRRRRLLLttTraffic source type 1Traffic source type 2LRLeft eye packet Right eye packet16.67ms16.67ms8.33ms8.33msPDB 10msLR

Figure 1. An example of traffic source type
Observation 1: For XR and Cloud Gaming, the following two traffic source types can be considered for evaluation, assuming frame rate is X FPS.
· Traffic source type 1: every 1/X s, the packets of both eyes arrive at the same time for each frame.
· Traffic source type 2: every 1/(2*X) s, the packets of left eye and right eye arrive in turn, e.g. the packet of left eye arrives at odd frames, while the packet of right eye arrives at even frames.
6.2.6.2
Packet modelling

Generally, for video streaming traffic, UDP (User Datagram Protocol) is used as the transport layer protocol, and typically a frame is segmented into one or multiple IP packets for transmissions. Therefore, following two different options for modelling packets of video traffic in evaluation can be considered.

· Option 1: an application level packet is modelled as a packet during simulation, i.e. one frame consisting of one or more IP level packets ≈ one packet in simulation.

· Option 2: an IP level packet is modelled as a packet during simulation, i.e. one IP level packet ≈ one packet in simulation.

Considering that the periodicity of video frames is deterministic and the PDB is actually for a frame, to simplify simulation, Option 1 is slightly preferred, i.e. a frame is modelled as a packet in our simulation. For Option 2, IP packets are segmented from the video frames arriving periodically. Besides, according to the analysis results of some video files, we see a similar distribution for Option 2 with that for Option 1.

Observation 2: For XR and Cloud Gaming, following options for packet modelling can be considered,
· Option 1: an application level packet is modelled as a packet during simulation, i.e. one frame consisting of one or more IP level packets ≈ one packet in simulation.
· Option 2: an IP level packet is modelled as a packet during simulation, i.e. one IP level packet ≈ one packet in simulation.
6.2.6.3
UL Traffic model
For VR/AR or CG in uplink, one of the typical UL traffic is the information for interaction with XR or game server. The pose information is sampled and packeted in the XR device, by the sensors equipped in the XR device e.g. gyroscope and gravity sensor. In general, the sampling rates are controlled by the application for which the pose information is applied. The more frequently the pose information is captured, the more accurate the rendered scenes and gaming control are. According to TR 26.928, in order to always be able to respond to the latest XR Viewer Pose, tracking needs to be done frequently and the minimum update rates should be 1000Hz and beyond.

Once the pose information is sampled and processed by the XR device, the pose information will be delivered to the XR or game server. The interval for delivering the pose information is dependent on the transmission resources in UL and the requirements of application. As a result, the interval for delivering the pose information may be different from the sampling interval of sensors for the pose capturing.

Therefore, the period of UL traffic model for XR evaluation refers to the transmission interval of uplink data packets controlled by the application rather than the sampling interval of sensors. Considering the transmission resources in UL and the potential power consumption at XR device, it is not necessary to always guarantee that the transmission interval is equal to the sampling interval.
Observation 3: the period of UL traffic model for XR evaluation is determined by the application, for example it may reduce the sending frequency of pose information compared to the frequency that pose information is produced.
Proposal: SA4 should take the traffic source type, the packet modelling and the periodicity of UL traffic model into account for XR/Cloud Gaming traffic model defination.
6.2.6.4
Summary Agreements

In this clause, some observations and proposal on XR and Cloud Gaming traffic model are provided as follows:

Observation 1: For XR and Cloud Gaming, the following two traffic source types can be considered for evaluation, assuming frame rate is X FPS.
· Traffic source type 1: every 1/X s, the packets of both eyes arrive at the same time for each frame.
· Traffic source type 2: every 1/(2*X) s, the packets of left eye and right eye arrive in turn, e.g. the packet of left eye arrives at odd frames, while the packet of right eye arrives at even frames.
Observation 2: For XR and Cloud Gaming, following options for packet modelling can be considered,
· Option 1: an application level packet is modelled as a packet during simulation, i.e. one frame consisting of one or more IP level packets ≈ one packet in simulation.
· Option 2: an IP level packet is modelled as a packet during simulation, i.e. one IP level packet ≈ one packet in simulation.
Observation 3: the period of UL traffic model for XR evaluation refers to the transmission interval of uplink data packets rather than the sampling interval of sensors.
Agreement: SA4 should take the traffic source type, the packet modelling and the periodicity of UL traffic model into account during XR/Cloud Gaming traffic model evaluation.
3 Proposed Updates to System Design
7.2.3
Content Delivery Emulation and Simulation

7.2.3.1
Introduction

Based on the discussion in clause 6.2, the content modeling is documented in Figure 5. This modeling includes:

· V-Model input

· Global configuration for encoder

· Statistical or dynamic feedback from content delivery receiver

· A decoding model

· Quality Model

[image: image4]
The content encoding is modelled as follows:

· For frame i from V-Trace (based on sample time)

· Read frame i from V-Trace (timestamp)

· Read latest dynamic information from dynamic status info

· Do a model encoding (based on input parameters)

· For slice s=1, 2, …, S

· Drop slice s with associated parameters

· new slice available creates IP packets

· For IP packet p=1, 2, …, P
· Drop IP packet with associated parameters and with timestamp to S-Trace 1, but also parameters such as slice number
Configuration parameters for content encoding may include

· Input: Global configuration

· Bitrate Control: Constant Quality, Constant Bitrate, Feedback-based Variable Bitrate, Constant Rate Factor 28

· Slice Setting (number of slices 10, maximum slice size)

· Error Resilience, Frame-based, Slice-based, Periodic Intra Refresh 10, Feedback-based intra refresh, Feedback-based prediction (NVIDIA: Period Intra Refresh, Reference Picture Invalidation)

· Input: Dynamic per slice information
· off
· statistically for bitrate or losses with some delay

· operational for bitrate or losses with some delay
Model encoding is for further study, but aspects to be taken into account are:

· Impacts of QP settings and intra ratio and slice settings

· Feedback

· Bitrate adjustments: Encoder gets an encoding bitrate and adjusts QP (see +/-1 (12%)
· Add Intra in case of a lost slice: significantly more intra added in case of a reported loss. Intra covers large area (depending on motion vector activity)

· Predicting from ACK only: statistical increase for frame size for lost slices, as not the latest one can be used

· Slice settings

Decoding emulation is based on the delay and loss of slices. Late and lost slices are considered unavailable and cause errors.
7.2.3.2
V-Trace Format:

· Needs some kind of encoding configuration

· Applied bitrate control

· Parameters of the command

· CRF encoding with CRFref = 28

· 1 slice, I and P encoding

· Reference frames

· Presentation Time Stamp

· POC Picture Order Count - The display order of the frames.

· I-Frame

· QP Quantization Parameter decided for the frame.

· Bits Number of bits consumed by the frame.

· PSNR Peak signal to noise ratio for Y, U and V planes.

· SSIM A quality metric that denotes the structural similarity between frames.

· Total frame time Total time spent to encode the frame.

· P-Frame

· POC Picture Order Count - The display order of the frames.
· QP Quantization Parameter decided for the frame.

· Bits Number of bits consumed by the frame.

· PSNR Peak signal to noise ratio for Y, U and V planes.

· SSIM A quality metric that denotes the structural similarity between frames.

· Latency Latency in terms of number of frames between when the frame was given in and when the frame is given out.

· Ref lists POC of references in lists 0 and 1 for the frame.

· Total frame time Total time spent to encode the frame.

· Percentage CU Intra

· Percentage CU Merge

· Percentage CU Skip

· Percentage CU Inter

In the example attached

· Yellow: Used for Encoding Modelling in CRF mode
7.2.3.3
Global Configuration (each of the following):

· Bitrate Control (one of the following):
· Constant Bitrate – bitrate & buffer

· Feedback-based Variable Bitrate - dynamic
· Constant Rate Factor – rate factor with CRF (default: CRFref is used)
· Slice Setting (one of the following)

· Default – no slices

· number of slices – number of slices (typical numbers are 4, 8, 16)
· maximum slice size – number in bytes

· Error Resilience (one of the following)

· Intra-refresh frame parameter would be the period (default is no intra refresh)
· Intra-refresh slice: period (1 (1 slice every 1 frame with the slice being picked as POC mod #slices) 2 (1 slice every 2 frames)

· Feedback-based
· Mode:

· intra refresh: add an intra for the lost slice

· ACK-mode: only use acknowledge slices in prediction

· NACK-mode: use an old reference frame or intra in case of loss

7.2.3.4
Dynamic status:

· Max number of bits for next frame (external rate control)

· frame Number, slice number ACK/NACK/unknown
7.2.3.5
Content Encoding Modelling

The content encoding is modelled as follows:

· Create a map of slices, CTU maps (64 x 64) and reference frames

· Example: 2048 x 2048, 8 slices, 3 reference frames

· Addresses for 2048 / (8 * 64) = 4 rows with 32 CTUs for 8 slices in 3 frames maintained.

· For each CTU store encoding mode:

· intra/inter+merge/skip

· largest reference frame (only previous one is used in simple config)

· For frame i from V-Trace (based on sample time)

· Read frame i from V-Trace (timestamp)

· Read latest dynamic information from dynamic status info, if applicable

· Do a model encoding

· Input parameters: V-Trace, global configuration, dynamic status (if applicable)

· Output: s slices with parameters

· Based on the map of intra and inter for each slice/MB

· Constant CRF

· Re-use the CRFref for which the Trace was generated.

· For every CTU

· Take P-frame intra/inter/merge/skip percentage and decide intra/inter/merge/skip randomly. This is done that the number of MBs is matching the trace entry.

· For every slice,

· apply intra/(inter + reference) decision as follows

· Periodic: slice mode follows pattern, other inter + reference 1

· Feedback intra: slice was lost => intra, else inter + reference 1

· Feedback ack: only ACK slices => reference inter + reference backward (typically more than 1), such that the slice was acked.

· Feedback NACK: slice nack => reference inter + reference backward (typically more than 1) prior to NACK or intra.

· For intra slices,

· overwrite the above CTU decision and make it an intra
· draw a number of bits for the slice
· that takes into account

· the type of the CTU

· the information in the trace file
· the total amount of the bits for this slice by the following modelling

· intra size:

· take total intra size and divide by number of CTUs as medium value

· apply Gaussian drawing with 10% variance of the total number of bits

· Use the CRF and apply adjustment as follows

· FinalBits = Bits * pow(2, (CRFref – CRF)/6)

· QPnew = QPref - (CRF – CRFref)

· skip:

· 1 byte

· merge + inter

· compute medium value as total inter size (total P-size - intra-percentage*intra-size – skip-percentage) and divide by number of inter CTUs (total CTUs*(1 – intra_percentage – skip_percentage))
· reference frame 1

· apply Gaussian drawing with 20% variance of the total number of bits with medium value
· Use the CRF and apply adjustment as follows

· FinalBits = Bits * pow(2, (CRFref – CRF)/6)

· QPnew = QPref - (CRF – CRFref)

· reference frame more than 1, it is X

· take total inter size and divide by number of CTUs as medium value

· multiply the medium value with X

· apply Gaussian drawing with 20% variance of the total number of bits

· do also intra test as above, if intra is lower, apply intra, else this inter mode.

· Use the CRF and apply adjustment as follows

· FinalBits = Bits * pow(2, (CRFref – CRF)/6)

· QPnew = QPref - (CRF – CRFref)

· sum up the size of each CTU for the slice
· Dump the following information:

· Slice Timing/frame count

· Left or right eye

· Slice availability (after the slice timing) relative to 0.

· Without encoding delay this is the same as the slice. time.

· Quality/QPnew

· New PSNR – add a function

· Slice size

· Slice type

· CTU types

· Bitrate constrained – a total max of bits available max_bits

· Do the same as for constant CRF

· Iterate to the smallest CRF that fulfill max_bits
The following issues are not yet included:

· Modelling of encoding times – no priority

· Model encoding delay.

· We also need to address the two independent buffers for left and right eye.
· Can we for now create the same process
· Option 1: Same timing

· Option 2: staggered left right at half the frame rate
· Can we derive a new PSNR for the updated QP?

· (Thomas) check for model

· In the absence of a model, we just make 1 QP step up reduces PSNR by 1dB (linear)

· What about slice modelling and all the issues that we saw

· Ignore slice modelling for now, no bitrate change compared to not using slices.
· We need to also address ACK/NACK based feedback

· NACK already addressed above.

· ACK you only take acknowledged slice/frames for references – this basically extends the reference frame the feedback delay per slice.
7.2.3.6
Slice to RTP/IP Packets
Configuration

· Maximum MTU size, e.g. 1500 bytes – last packet just fills the remaining data.

For each slice, create fragmentation units

· Separate slice into several same size max packets except for the last.

· Add to each packet the slice number

Now we have a packet delay/loss simulator for the RTP packets.

7.2.4
RAN Simulation

We believe that initially SA4 should emulate RAN simulation based on existing 5QIs. Once complete this should be provided to the RAN group for discussion.

The RAN simulation parameters are as follows:

-
packet loss statistics

-
delay statistic

-
Is the loss probability/delay depending on the amount of data that is produced?

7.2.4
RAN Simulation

We believe that initially SA4 should emulate RAN simulation based on existing 5QIs. Once complete this should be provided to the RAN group for discussion.

7.2.5
Quality Evaluation

7.2.5.1
Overview
Quality Evaluation is based on two aspects, namely the encoding quality and the quality degradation due to lost slices. This evaluation is shown in Figure 6.

[image: image5]
The following simulation is proposed for identifying damaged macroblocks:

· Keep a state for each macroblock

· Damaged

· Correct

· Macroblock is damaged

· If it is part of a slice that is lost for this transmission

· If it is correctly received, but it predicts from a wrong macroblock

· Macroblock is correct

· If it is received correctly and it predicts for a non-damaged macroblock

· Predicting from non-damaged macroblock means

· Spatial prediction is correct

· Temporal prediction is correct

· Recovering MBs done by Intra Refresh and predicting from correct MBs again.
Depending on the configuration and the setting of the delivered video quality, different results may be obtained. An example is shown in Figure 7.

A quality threshold may for example be to have at most 0.1 % of damaged video area. Also the quality of the original content may be a threshold. Details are ffs.

[image: image6]
7.2.5.2
Slice Recovery

At the recovery the following happens for recovering RTP/IP packet traces:

-
if one packet of a slice is lost the entire slice is lost

-
the delay of the latest packet determines the arrival time of the slice.

· Dump the following information:

· Slice Timing/frame count

· Left or right eye

· Slice availability (after the slice timing) relative to 0.

· The time it took through system

· It can also be infinite = lost

· Quality/QPnew

· New PSNR – add a function

· Slice size

· Slice type

· CTU types

The result is a slice delay trace

· Slice Timing/frame count

· Left or right eye

· Slice availability (after the slice timing) relative to 0.

· The time it took through system

· It can also be infinite = lost

· Quality/QPnew

· New PSNR – add a function

· Slice size

· Slice type

· CTU types

7.2.5.3
Quality Measurement

Input information

· Trace of
· Slice Timing/frame count

· Left or right eye

· Slice availability (after the slice timing) relative to 0.

· The time it took through system

· It can also be infinite = lost

· Quality/QPnew

· New PSNR – add a function

· Slice size

· Slice type

· CTU types

Run the following algorithm:

· Input parameters.

· Parameters of source

· Resolution

· reference frames

· Slice Trace

· Loss delay

· Decoding delay: do we want to model decoding of late arriving slices, i.e. they can still be decoded and used as reference, but not as part of the presentation.
· Create a map of slices, CTU maps (64 x 64) and reference frames

· Example: 2048 x 2048, 8 slices, 3 reference frames

· Addresses for 2048 / (8 * 64) = 4 rows with 32 CTUs for 8 slices in 3 frames maintained.

· For each CTU of each frame, store mode:

· Correct

· Damaged

· Unavailable

· Initialize all CTUs as unavailable

· For each frame i

· Get all slices from trace for the frame

· For all slices that are lost or later than decoding delay

· Mark all CTUs as unavailable

· Indicate the slice loss for feedback

· For all slices are received

· Indicate the slice received for “feedback”

· If it is an intra CTU, mark it correct

· If it is an inter CTU and it references a damaged or unavailable CTU, mark it as damaged, otherwise mark it as correct

· Referencing is determined as follows (note a better model may be developed in the future)
· The CTU in the new frame references the CTU at the same position in the referencing frame is 100%

· The probability of referencing a neighbouring CTU top/bottom/left/right is 50%

· The probability of referencing a neighbouring CTU is 50%, if one of the two top/botton/left/right is referenced, and 100% if both are referenced, and is 0% if none are referenced.
· Compute the totally unavailable and damaged CTUs in this frame

· Compute the average PSNR for this frame

· avPSNR = PSNR * correctCTUs/totalCTUs

· Run this independently for each eye buffer

7.2.7
Simulation Parameters and Options

As a summary from the above, there are still quite many simulation parameters and options. Below is a proposal for a reduced setting:

· XR Gaming Sequence + 6DoF movement (1+ option)

· Qualcomm will provide a 1 min V-Trace for low latency

· Others?

· Frame Rate (1+):

· 60 fps (for others input welcome)

· Slice setting (1):
· 8 slices

· Encoding delay (2)

· None

· Equally distributed over frame interval
· Error resilience (2)

· GDR 1 slice per frame

· Feedback based NACK

· Rate control (3):

· CRF=28

· Capped VBR with CRF 28

· Feedback controlled

· Content delivery (2)

· Eye buffers: same time, staggered

· RTP-based NACK, if needed.
· Downlink delay budget (2)

· 50ms, 100ms

· RAN Configuration (tbd)

The above results in 48 combinations for each sequence, a subset may be selected.

4 Proposal
It is proposed to update the permanent document accordingly and concentrate on data in 7.2.7.[image: image7.png][image: image8.png]
Figure � SEQ Figure * ARABIC �1� Split Rendering with Asynchronous Time Warping (ATW) Correction

Figure � SEQ Figure * ARABIC �5� Content Delivery Modeling

Figure � SEQ Figure * ARABIC �6� Quality Evaluation

Figure � SEQ Figure * ARABIC �7� Potential Evaluation Graph

- 12/13 -

[image: image9.png][image: image10.png][image: image11.png][image: image12.png][image: image13.png]