

	
3GPP TSG-S4 Ad-Hoc Meeting on MTSI	S4aM210667
Online, 27th October 2021
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	26.962
	CR
	-
	rev
	
	Current version:
	
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Guidelines on Overlays using MPEG-I Scene Description

	
	

	Source to WG:
	Qualcomm

	Source to TSG:
	S4

	
	

	Work item code:
	ITT4RT
	
	Date:
	<Res_date>

	
	
	
	
	

	Category:
	<Cat>
	
	Release:
	<Release>

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	First Change

Scene Description-based Overlay
Scene Description
Overview
A scene graph is a directed acyclic graph, usually just a plain tree-structure, that represents an object-based hierarchy of the geometry of a scene. The leaf nodes of the graph represent geometric primitives such as polygons. Each node in the graph holds pointers to its children. The child nodes can among others be a group of other nodes, a geometry element, a transformation matrix, etc.
Spatial transformations are attached to nodes of the graph and represented by a transformation matrix.
This structure of scene graphs has the advantage of reduced processing complexity, e.g. while traversing the graph for rendering. An example operation that is simplified by the graph representation is the culling operation, where branches of the graph are dropped from processing, if deemed that the parent node’s space is not visible or relevant (level of detail culling) to the rendering of the current view frustum.
glTF 2.0
glTF 2.0 is a new standard that was developed by Khronos to enable Physically Based Rendering. glTF 2.0 offers a compact and low-level representation of a scene graph. glTF 2.0 offers a flat hierarchy of the scene graph representation to simplify the processing. glTF 2.0 scene graphs are represented in JSON to ease the integration in web environments. The glTF 2.0 specification is designed to elimate redundancy in the representation and to offer efficient indexing of the different objects in the scene graph.
The structure of a glTF 2.0 scene graph document is arranged as follows:

[image:]

The scene graph itself has the following structure:
[image:]

MPEG-I Scene Description
MPEG has developed an architecture for immersive media, where a Presentation Engine plays a center role. The Presentation Engine is responsible for receiving the scene description and its updates, parsing it, and rendering the scene. In order to access the media required to render the scene, the Presentation Engine invokes functionality provided by the Media Access Function API.
The MPEG-I scene description architecture is depicted by the following figure:
[image:]
The MPEG solution also specifies a key set of extensions to glTF 2.0 to support timed media such as dynamic objects, video textures, and audio. The MPEG_media, MPEG_accessor_timed, and MPEG_buffer_circular extensions make up the core of these extensions and enable integrating all timed media. The MPEG_texture_video allows the integration of video textures that could for example be the sources of an overlay in an ITT4RT conference. The MPEG_audio_spatial allows for adding spatial audio sources to a scene and binding the listener to the scene’s camera.
The node structure of an MPEG-I scene description is depicted by the following diagram:
[image: Graphical user interface

Description automatically generated]
The MPEG-I scene description design allows for decoupling media access, which would be provided by the Media Access Function, from the scene rendering, which is provided by the Presentation Engine.
Scene Description of for ITT4RT Sessions
Scene Graphs make it very simple to compose scenes for an immersive presentationconference. The composition may be performed at an MRF or MCU. Alternatively, a designated party in the conference may be selected to be is responsible for creating the initial scene description and sharing it with all other parties participants in the call. This participanty may be the one that creates contributes the main 360 VR content, for instance, the party participant that is in the conference room with a VR capture capabilities.
The scene description describes the whole scene, including all audible/visible participants and the main conference room. In an ITT4RT session, the participants may contribute the main 360 content node, one or more overlay nodes, and at most one audio source.
The 360 degree content is described through a sphere or cube-map geometry with associated video texture coming from the 360 video. The type of geometry depends on the selected projection for the ITT4RT session. The overlay nodes are typically rectangular plane regions with an associated video texture coming from the associated overlay video stream.
Unless the initial layout is static, Each party may contribute one or more nodes to the Scene Graph. Each nodes comes with its associated transformation (in form of a matrix, or individual translation and rotation operations), to place that node appropriately in the scene.each participant is required to share their actual position and orienation with the scene owner, e.g. MRF/MCU, which in turn will update the scene accordingly and share the updates with all participants that support scene description.
Participants are required to indicate if they support scene description by accepting an SDP offer that contains the data channel, which indicates “mpeg-sd” as the sub-protocol. A participant that does not support scene description will receive an overlay description in the SDP and may declare its overlay streams using the SDP 3gpp-overlay attribute.
In a scene, node names are expected to be unique to ensure there are no naming conflicts in nodes provided by different parties in a call. Nodes in the scene description may reference external media streams, such as other media streams that are declared in the SDP. A participant may mask nodes from certain parties in the rendering process, e.g. based on user input.

Referencing Media Streams
In order to reference the source video streams for the 360 content and the overlays in a scene description document, the URL format as specified in 23090-14 Annex B is to be used.
The ABNF syntax for the URI format shall be as follows:
	url="rtp://" fqdn_or_ip [":" port] "/" session_id "/" ssrc "/" mid
The fqdn_or_ip field contains the address of the source of the stream. The session_id corresponds to the SIP call id, and the ssrc corresponds to the SSRC identifier of the source. The mid corresponds to the mid attribute of the referenced media stream in the SDP.The scene description references media streams from the conferencing session that are used as components of nodes in the scene. An example could be a video stream of a conference participant that is to be displayed in a rectangular region in the 3D scene. The following URI format shall be used for this purpose:
url=”rtp://” fqdn_or_ip “/” call_id “/” ssrc “/” mid
where fqdn_or_ip represent the domain name or ip address of the MRF or SIP proxy that manages the call. If none is used, it represents the domain name or ip address of the SIP address of the host of the call. call_id provides a unique identifier for the current call or conference. ssrc represents the synchronization source of the owner/sending participant of the media stream. Finally, mid represents media session identifier as provided in the SDP.
Processing
Parties of an ITT4RT conference may establish direct peer-to-peer WebSocket channels with each other or a connection may be offered by an MRF to all parties. The WebSocket channel shall use the text frame format.

A receiver may mask nodes from certain parties in the rendering process, e.g. based on user input.
The MRF is by default the owner of the master scene graph, i.e. the one that sets the coordinate system and in which all other nodes are composited. It is also the one that defines the main camera in the scene.
In the absence of a centralized MRF, the parties in the call may select one party to provide the main scene description, for example by selecting the one that provides the VR content or the organizer of the call.
Overlays can be 2D or 3D objects that are placed within the scene. The geometry of the overlay and its texture are defined by the node that corresponds to that overlay object. A simple example is a set of slides that are played in a rectangular area that is shown inside the VR scene. In this case, the geometry will be a rectangle and the texture might be coming from a video media stream. The rectangle is placed in the scene. For viewport-dependent overlay, the position of the rectangle is locked to the camera direction.
Example Scene Description with Overlays
The following example depicts a scene description with a sphere projection 360 video and two overlay streams.
	{
 "asset": {
 "version": "2.0"
 },
 "scenes": [
 {
 "name": "Scene",
 "nodes": [
 0,
 1,
 2
]
 }
],
 "scene": 0,
 "nodes": [
 {
 "name": "Sphere",
 "mesh": 0
 },
 {
 "matrix": [
 1, 0,0,0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, -3, 1
],
 "name": "Overlay1",
 "mesh": 1
 },
 {
 "matrix": [
 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 3, 1
],
 "name": "Overlay2",
 "mesh": 2
 }
],
 "bufferViews": [
 {
 "buffer": 0,
 "byteOffset": 0,
 "byteLength": 6732,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 6732,
 "byteLength": 6732,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 13464,
 "byteLength": 4488,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 17952,
 "byteLength": 5760,
 "target": 34963
 },
 {
 "buffer": 0,
 "byteOffset": 23712,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23760,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23808,
 "byteLength": 32,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 23840,
 "byteLength": 12,
 "target": 34963
 },
 {
 "buffer": 0,
 "byteOffset": 23852,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23900,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23948,
 "byteLength": 32,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 23980,
 "byteLength": 12,
 "target": 34963
 }
],
 "buffers": [
 {
 "byteLength": 23992,
 "uri": "decoded-file.bin"
 }
],
 "accessors": [
 {
 "bufferView": 0,
 "componentType": 5126,
 "count": 561,
 "max": [
 5,
 5,
 5
],
 "min": [
 -5,
 -5,
 -5
],
 "type": "VEC3"
 },
 {
 "bufferView": 1,
 "componentType": 5126,
 "count": 561,
 "max": [
 1,
 1,
 1
],
 "min": [
 -1,
 -1,
 -1
],
 "type": "VEC3"
 },
 {
 "bufferView": 2,
 "componentType": 5126,
 "count": 561,
 "max": [
 1.015625,
 1
],
 "min": [
 -0.015625,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 3,
 "componentType": 5123,
 "count": 2880,
 "max": [
 560
],
 "min": [
 0
],
 "type": "SCALAR"
 },
 {
 "bufferView": 4,
 "componentType": 5126,
 "count": 4,
 "max": [
 1.5,
 0.5,
 0
],
 "min": [
 -1.5,
 -0.5,
 0
],
 "type": "VEC3"
 },
 {
 "bufferView": 5,
 "componentType": 5126,
 "count": 4,
 "max": [
 0,
 0,
 1
],
 "min": [
 0,
 0,
 1
],
 "type": "VEC3"
 },
 {
 "bufferView": 6,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 1
],
 "min": [
 0,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 7,
 "componentType": 5123,
 "count": 6,
 "max": [
 3
],
 "min": [
 0
],
 "type": "SCALAR"
 },
 {
 "bufferView": 8,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 0.5,
 0
],
 "min": [
 -1,
 -0.5,
 0
],
 "type": "VEC3"
 },
 {
 "bufferView": 9,
 "componentType": 5126,
 "count": 4,
 "max": [
 0,
 0,
 1
],
 "min": [
 0,
 0,
 1
],
 "type": "VEC3"
 },
 {
 "bufferView": 10,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 1
],
 "min": [
 0,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 11,
 "componentType": 5123,
 "count": 6,
 "max": [
 3
],
 "min": [
 0
],
 "type": "SCALAR"
 }
],
 "materials": [
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 0
 }
 },
 "doubleSided": true,
 "name": "background"
 },
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 1
 }
 }
 },
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 2
 }
 }
 }
],
 "meshes": [
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 0,
 "NORMAL": 1,
 "TEXCOORD_0": 2
 },
 "indices": 3,
 "material": 0
 }
]
 },
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 4,
 "NORMAL": 5,
 "TEXCOORD_0": 6
 },
 "indices": 7,
 "material": 1
 }
]
 },
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 8,
 "NORMAL": 9,
 "TEXCOORD_0": 10
 },
 "indices": 11,
 "material": 2
 }
]
 }
],
 "extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/809800/1"
 }
]
 },
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/8034300/2"
 }
]
 },
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/64993/3"
 }
]
 }
]
 }
 }
}

image1.emf
-~

_

.bin

Geometry: vertices and indices
Animation: key-frames
Skins: inverse-bind matrices

N\

/

glsl

Shaders

N

.png, .jpg, ...

Textures

~

.json

Node hierarchy, materials, lights, cameras

.bin

•

Geometry: vertices and indices

•

Animation: key-frames

•

Skins: inverse-bind matrices

.glsl

Shaders

.png, .jpg, …

Textures

image2.emf

scene

node

camera

mesh

light

accessor

bufferView

buffer

material

technique texture

sampler

image program

shader

1

2

1

1

1

1

*

*

*

*

1

1

*

*

*

animation

skin

*

1

image3.emf
Media
Requests

Media

MAF API

scene

[~====== === - --mmmsssssooooooo--------- I description

|
| Buffer Buffer L Buffer
© o TAPI Management APT

| Local Storage I:

Access

document

A 4

pipeline —-—»{) Buffer

Media Access
Function

pipeline —’O Buffer

.

Synchronization

AN

Presentation
Engine

\

Rendering

Buffer

Presentation	

Engine

Buffer

Buffer

Media	Access	

Function

…

Cloud

Local	Storage

Media	

Requests

Synchronization Rendering

scene	

description	

document

Media	

Access

Buffer	

Management

MAF	API

Buffer	

API

Buffer	

API

pipeline

pipeline

image4.tiff
- .
. . .
[s auto spaa | I
. .
.
. .
(i] .
. .
. . .
I . . I
. ﬁ\—J
I
I
.
N .
I .
EEEEETR

I

I I

