3GPP TSG-SA WG4 Meeting #Audio SWG AH				S4aA250203
Erlangen, 23 – 25 Sept. 2025
Source:	vivo, MediaTek Inc., Bytedance, Spreadtrum, CMCC, Fraunhofer IIS, Dolby Laboratories Inc.
Title:	[FS_ULBC] Discussion on CPU-centric Complexity for ULBC
Agenda item:	4.4
Document for:	DISCUSSION and AGREEMENT

1. Introduction
The ongoing study on the Ultra-Low Bitrate Codec (ULBC) [1] has initiated critical discussions on defining appropriate complexity constraints for next-generation, AI-driven speech codecs. Current discussions [2] have heavily focused on metrics related to Neural Processing Units (NPUs), such as TOPS and TOPS/W, positioning the NPU as the primary target for deployment.
However, this contribution argues for a revised perspective. A deep analysis of Google state-of-the-art Lyra V2 [3] codec reveals that its remarkable performance is achieved entirely on the CPU. This verifiable, real-world example demonstrates that highly efficient, state-of-the-art AI codecs can be deployed successfully without depending on the fragmented and unpredictable NPU ecosystem.
This paper proposes that CPU performance should be considered a primary design objective for the ULBC, not merely a fallback. We provide a detailed analysis of the Lyra V2 architecture to support this position and suggest capturing these findings within the technical report TR 26.940 to ensure the final ULBC standard is accessible, reliable, and performs consistently across the widest possible range of devices.
2. Analysis of an existing AI codec: Lyra V2
Google Lyra V2 codec serves as a powerful case study. Its publicly reported performance of "38x faster than real-time" on a Pixel 6 Pro [4] is achieved entirely via CPU execution. A direct analysis of the open-source codebase confirms that all performance-critical components are implemented to run directly on the CPU, with a complete absence of NPU/TPU delegate calls. Furthermore, the codec is open-sourced under the Apache 2.0 license [5], which is permissive for commercial and standardization purposes, making it an ideal reference for this study.
2.1. Code-Level Analysis
The Lyra V2 implementation consistently defaults to a CPU-based execution path for neural network inference.
· The core LyraGanModel [6] and SoundStreamEncoder [7] components explicitly use a flag (use_xnn=true) that directs the TensorFlow Lite [9] interpreter to use its CPU backend (XNNPACK backend [8]) for execution, rather than offloading to specialized hardware accelerators.
	Location: lyra/lyra_gan_model.cc
std::unique_ptr<LyraGanModel> LyraGanModel::Create(
 const ghc::filesystem::path& model_path, int num_features) {
 auto model =
 TfLiteModelWrapper::Create(model_path / "lyragan.tflite",
 /*use_xnn=*/true, /*int8_quantized=*/true);
 if (model == nullptr) {
 LOG(ERROR) << "Unable to create LyraGAN TFLite model wrapper.";
 return nullptr;
 }
Location: lyra/soundstream_encoder.cc
std::unique_ptr<SoundStreamEncoder> SoundStreamEncoder::Create(
 const ghc::filesystem::path& model_path) {
 auto model = TfLiteModelWrapper::Create(
 model_path / "soundstream_encoder.tflite", /*use_xnn=*/true,
 /*int8_quantized=*/false);
 if (model == nullptr) {
 LOG(ERROR) << "Unable to create SoundStream TFLite model wrapper.";
 return nullptr;
 }

· The TFLite model wrapper implementation is notably devoid of any delegates for hardware acceleration. There are no calls to the NNAPI [10] delegate (for Android NPUs), Hexagon delegate [11] (for Qualcomm DSPs), CoreML [12] delegate (for Apple Neural Engine), or TPU [13] delegate. The architecture is fundamentally CPU-centric.
· It should be noted that the number of threads is explicitly set to only 1 in the Lyra code, as can be seen here in lyra/lyra/tflite_model_wrapper.cc Line 68 (https://github.com/google/lyra/blob/main/lyra/tflite_model_wrapper.cc#L68C5-L72C43).
· The benchmark results provided in the codebase comments confirm exceptional performance (38x real-time on a Pixel 6 Pro [4]) achieved through this CPU-only pathway.
	Location: Comments showing Pixel 6 Pro results
If you press 'Benchmark', you should see something like the following in logcat
on a Pixel 6 Pro when running the benchmark:
lyra_benchmark: feature_extractor: max: 1.836 ms min: 0.132 ms mean: 0.153 ms
lyra_benchmark: quantizer_quantize: max: 1.042 ms min: 0.120 ms mean: 0.130 ms
lyra_benchmark: quantizer_decode: max: 0.103 ms min: 0.026 ms mean: 0.029 ms
lyra_benchmark: model_decode: max: 0.820 ms min: 0.191 ms mean: 0.212 ms
lyra_benchmark: total: max: 2.536 ms min: 0.471 ms mean: 0.525 ms

A mean processing time of 0.525 ms for a 20 ms audio frame corresponds to being ~38 times faster than real-time.
2.2. Implications of the Lyra V2 Architecture
The success of Lyra V2 CPU-only approach provides several critical insights for the ULBC study:
1. It definitively proves that a state-of-the-art, low-bitrate AI speech codec can achieve and exceed real-time performance requirements on modern smartphone CPUs with a significant margin towards max. RTF.
2. Evaluating CPU performance ensures that the ULBC will function efficiently on all devices, including lower-end models that may lack a capable NPU. This aligns with the goal of creating a universal standard.
3. The Challenges of an NPU-Primary Target
While NPUs offer theoretical efficiency gains, making them the primary design target for a standard presents significant challenges:
· The NPU market is highly fragmented, with different architectures and software stacks from Qualcomm, MediaTek, Apple, Google, and others. A codec designed for one NPU may not perform well on another, creating an uneven user experience.
· Basing complexity constraints on vendor-provided metrics like TOPS or TOPS/W raises concerns about objectivity. As noted in the discussions around S4-251326 [2], this approach places the standards body in the difficult position of validating commercial claims and could inadvertently create a preference for certain hardware, which is outside the scope of a technical standard.
· NPUs are shared resources. A codec's performance can be impacted by other processes running on the device, making it difficult to guarantee consistent, real-time execution.
43. Proposals for TR 26.940
Based on the conclusive evidence from the Lyra V2 analysis, it is proposed that the following changes be made in TR 26.940 to guide the definition of design constraints:

[bookmark: _Hlk61529092]* * * First Change * * * *
[bookmark: _Toc10648][bookmark: _Toc20825][bookmark: _Toc18127][bookmark: _Toc16261][bookmark: _Toc3893][bookmark: _Toc191892943]7	Existing technologies and feasibility evidence
Editor’s Note:	
4. Provide some evidence that the design criteria can be met, for example existing reference codecs.
[bookmark: _Toc16570]7.2	Analysis of an existing AI codec: Lyra V2
Google Lyra V2 codec serves as a powerful case study. Its publicly reported performance of "38x faster than real-time" on a Pixel 6 Pro [4] is achieved entirely via CPU execution. A direct analysis of the open-source codebase confirms that all performance-critical components are implemented to run directly on the CPU, with a complete absence of NPU/TPU delegate calls. Furthermore, the codec is open-sourced under the Apache 2.0 license [5], which is permissive for commercial and standardization purposes, making it an ideal reference for this study.
7.2.1. Code-Level analysis
The Lyra V2 implementation consistently defaults to a CPU-based execution path for neural network inference.
· The core LyraGanModel [6] and SoundStreamEncoder [7] components explicitly use a flag (use_xnn=true) that directs the TensorFlow Lite [9] interpreter to use its CPU backend (XNNPACK backend [8]) for execution, rather than offloading to specialized hardware accelerators.
	Location: lyra/lyra_gan_model.cc
std::unique_ptr<LyraGanModel> LyraGanModel::Create(
 const ghc::filesystem::path& model_path, int num_features) {
 auto model =
 TfLiteModelWrapper::Create(model_path / "lyragan.tflite",
 /*use_xnn=*/true, /*int8_quantized=*/true);
 if (model == nullptr) {
 LOG(ERROR) << "Unable to create LyraGAN TFLite model wrapper.";
 return nullptr;
 }
Location: lyra/soundstream_encoder.cc
std::unique_ptr<SoundStreamEncoder> SoundStreamEncoder::Create(
 const ghc::filesystem::path& model_path) {
 auto model = TfLiteModelWrapper::Create(
 model_path / "soundstream_encoder.tflite", /*use_xnn=*/true,
 /*int8_quantized=*/false);
 if (model == nullptr) {
 LOG(ERROR) << "Unable to create SoundStream TFLite model wrapper.";
 return nullptr;
 }

· The TFLite model wrapper implementation is notably devoid of any delegates for hardware acceleration. There are no calls to the NNAPI [10] delegate (for Android NPUs), Hexagon delegate [11] (for Qualcomm DSPs), CoreML [12] delegate (for Apple Neural Engine), or TPU [13] delegate. The architecture is fundamentally CPU-centric.
· It should be noted that the number of threads is explicitly set to only 1 in the Lyra code, as can be seen here in lyra/lyra/tflite_model_wrapper.cc Line 68 (https://github.com/google/lyra/blob/main/lyra/tflite_model_wrapper.cc#L68C5-L72C43).
· The benchmark results provided in the codebase comments confirm exceptional performance (38x real-time on a Pixel 6 Pro [4]) achieved through this CPU-only pathway.
	Location: Comments showing Pixel 6 Pro results
If you press 'Benchmark', you should see something like the following in logcat
on a Pixel 6 Pro when running the benchmark:
lyra_benchmark: feature_extractor: max: 1.836 ms min: 0.132 ms mean: 0.153 ms
lyra_benchmark: quantizer_quantize: max: 1.042 ms min: 0.120 ms mean: 0.130 ms
lyra_benchmark: quantizer_decode: max: 0.103 ms min: 0.026 ms mean: 0.029 ms
lyra_benchmark: model_decode: max: 0.820 ms min: 0.191 ms mean: 0.212 ms
lyra_benchmark: total: max: 2.536 ms min: 0.471 ms mean: 0.525 ms

A mean processing time of 0.525 ms for a 20 ms audio frame corresponds to being ~38 times faster than real-time.
7.2.2. Conclusion
The success of Lyra V2 CPU-only approach provides several critical insights for the ULBC study and:
It definitively proves that a state-of-the-art, low-bitrate AI speech codec, similar to Lyra v2, can achieve and exceed real-time performance requirements on a modern smartphone CPU, such as Pixel 6 Pro,s with a significant margin towards max. RTF.
1. Evaluating CPU performance ensures that the ULBC will function efficiently on all devices, including lower-end models that may lack a capable NPU. This aligns with the goal of creating a universal standard.

* * * Second Change * * * *
Table 6.2-1 List of ULBC design constraint parameter
	Parameter
	Design Constraint
	Note

	Bit rates

	
	

	Sample rate and audio bandwidth

	
	

	Frame length
	
	

	Complexity and memory demands
	
	Clause 7 provides several complexity analyses for informational and reference purposes.It is observed that Lyra V2, a state-of-the-art AI-based speech codec, achieves performance significantly faster than real-time through direct CPU execution without reliance on NPU/TPU hardware acceleration.

	Algorithmic delay
	
	The algorithmic delay is defined as the frame size buffering delay plus any other delays inherent in the codec algorithm (e.g., look-ahead, sample-rate conversion, and decoder post-processing)

	Packet loss concealment (PLC)
	
	

	Potential use of noise suppression as part of the codec
	
	

	Discontinuous transmission including voice activity detection and comfort noise
	
	

	Robustness to non-speech input
	
	Editor’s note: May need to be in performance requirement

	
	
	

* * * Third Change * * * *
[bookmark: _Toc15491][bookmark: _Hlk206431511]6.3	Design Constraint Verification
Editor’s note: Algorithmic delay verification method for AI based codecs required.
[bookmark: _Toc23271]6.3.1	Complexity Verification
Given the evidence that state-of-the-art AI codecs can run efficiently on the CPU, it is proposed that the ULBC study treat CPU performance (such as RTF and RTF distributions across a set of representative devices) as a metric of codec complexity verification.
* * * End of Changes * * * *

Reference
[1] SP-250378 "New SID on Ultra Low Bitrate Speech Codec".
[2] SP-251326 "On ULBC complexity design constraints".
[3] Lyra V2 - a better, faster, and more versatile speech codec [Internet]. Google Open Source Blog; 2022 Sept 30 [cited 2025 Aug 15]. Available from: https://opensource.google.com/blog
[4] Google. Lyra: A generative low bitrate speech codec [Internet]. GitHub; [cited 2025 Aug 15]. Available from: https://github.com/google/lyra/blob/main/README.md#building-for-android
[5] Apache License, Version 2.0 [Internet]. Apache Software Foundation; 2004 Jan [cited 2025 Aug 15]. Available from: https://github.com/google/lyra?tab=Apache-2.0-1-ov-file
[6] Google, lyra_gan_model.cc, Lyra repository, commit 47698da, viewed 15 August 2025, https://github.com/google/lyra/blob/47698dadf0010abff6a848e02642f55f806d4842/lyra/lyra_gan_model.cc#L36
[7] Google, soundstream_encoder.cc, Lyra repository, commit 47698da, viewed 15 August 2025, https://github.com/google/lyra/blob/47698dadf0010abff6a848e02642f55f806d4842/lyra/soundstream_encoder.cc#L36
[8] Google. XNNPACK: High-efficiency floating-point neural network inference operators for mobile, server, and Web [Internet]. GitHub; [cited 2025 Aug 15]. Available from: https://github.com/google/XNNPACK
[9] Google AI for Developers. LiteRT overview [Internet]. Google AI Edge; [updated 2025 May 19; cited 2025 Aug 15]. Available from: https://ai.google.dev/edge/litert
[10] ONNX Runtime. "NNAPI Execution Provider." ONNX Runtime Documentation. [Online]. Available: https://onnxruntime.ai/docs/execution-providers/NNAPI-ExecutionProvider.html
[11] Qualcomm, "QNN," in AI Engine Direct SDK, Jul. 07, 2025. [Online]. Available: https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/introduction.html
[12] "Apple's Neural Engine (ANE)" Apple Wiki, Fandom. [Online]. Available: https://apple.fandom.com/wiki/Neural_Engine
[13] Google Cloud. Introduction to Cloud TPU [Internet]. Google Cloud Documentation; [updated 2025 Aug 11; cited 2025 Aug 15]. Available from: https://cloud.google.com/tpu/docs/intro-to-tpu
