

	
3GPP TSG-SA3 Meeting #80-LI-e-a	S3i210016
Online, January 2021		

Source:	NTAC, Softel Systems, EVE
Title:	Proposals for using the 3GPP Forge in SA3-LI
Document for:	Decision
Agenda Item:	10.2
Work Item / Release:	LI17
Abstract of the contribution:
This contribution proposes how SA3-LI should use the 3GPP Forge as part of the CR process for the machine-readable (i.e. ASN.1 and XSD) parts of our specifications.

1 - Summary
This contribution seeks endorsement for the following actions:
Setting up 3GPP Forge repositories as described in section 2 and Annexes A and B.
Adopting the processes described in section 3
Adopting the branching and tagging conventions defined in section 4
2 - Repositories
We propose creating a single repository to represent the output of SA3LI meetings. This repository will contain each of the formal-language components of published SA3LI deliverables in a sub-directory. In addition, the repository may include test fixtures and scripts used to validate ASN.1 and XSD schemas.
The directory structure will therefore be as follows:
· Repository root
· Directory for TS 33.128
· R16
· Formal language artefacts for TS 33.128 Release 16
· Test artefacts for R16
· R15
· Formal language artefacts for TS 33.128 Release 15
· Test artefacts for R15
· Directory for TS 33.108
· R15
· Formal language artefacts for TS 33.108 Release 15
· Test artefacts for R15
· R14
· Formal language artefacts for TS 33.108 Release 14
· Test artefacts for R16
· (etc with previous releases)
· Shared Test fixtures

Each directory will contain the latest version of the appropriate artefacts for the given deliverable and release. The repository's commit history will show the evolution of the artefacts through the various versions of each release. Tags will be used to enable easy retrieval of specific versions (see Branching and Tagging conventions below).
Annex A contains the appropriate request forms to seek the creation of the repositories as described.
Annex B contains information on how the repositories should be configured, including user permissions and default branch behaviours.
3 - CR process
We propose the following process:
Step 0 - Preparing for a meeting
The Maintainer creates a meeting branch (i.e. branch specific to the meeting) following the branching convention given in section 4.
Step 1 - Drafting a CR
The CR Author creates a branch specific to their CR, following the branching convention given in section 4.
The CR Author commits the desired changes to their branch. Other delegates may collaborate with the CR Author, either by pushing commits to their branch or creating merge requests from their own branches. As a matter of etiquette, the CR author should be consulted on if and how such collaboration is achieved.
Changes made to the CR branch are visible to anyone with access to the 3GPP Forge. Delegates may comment on and, if appropriate, contribute to, the changes in the CR branch.
Step 2 – Submitting a CR to a meeting
The CR Author creates a Merge Request from their CR branch to the desired meeting branch.
Changes for a CR are made in a branch of their own (see Branching convention)
When ready for submission, the CR contributor makes a Merge Request from the CR branch to the meeting branch. The CR author shall ensure that the latest commit passes any automated syntax and drafting rule checks before raising the Merge Request. CRs that do not pass the checks may only be accepted strictly by exception and at the Chair’s discretion.
The CR Author prepares a CR document as per the existing 3GPP processes. This CR should contain changes to the specification document. A reference to the applicable commit (including a link) is given in the “Other Comments” section of the CR cover sheet.
Step 3 – Consideration of the CR at the meeting
The CR Author presents both the CR form and the associated changes in the 3GPP Forge to the meeting.
The CR Author makes any necessary changes by making additional commits to the CR branch. The CR form is updated as necessary following the usual process. As part of the update, the reference to the latest commit shall be updated in the CR form.
Step 4 - Agreement of the CR by SA3LI
When the CR is agreed, the Maintainer accepts the merge request into the meeting branch
	!
	Accepting a Merge Request may result in a Merge Conflict appearing for any other CRs that have yet to be agreed. The repository configuration given in Annex B ensures that in most common cases these can be automatically resolved in the Forge UI. However, if two changes genuinely conflict (i.e because they change the same piece of code) then the conflict will require manual resolution. This is already true today – but this processes ensures that the conflict must be resolved prior to agreement and is properly audited.

When accepting the Merge Request, the Maintainer ensures that commits are not squashed, and the original branch deleted.
Step 5 - Agreement of the CR by SA plenary
Once the changes are confirmed by SA, the Rapporteur of each affected standard shall implement the changes agreed in the CRs, as usual. For CRs which reference the 3GPP Forge, the Rapporteur may simply download a diff of the meeting branch against the main branch and use that to implement changes in the Word document, since the Forge will already have taken care of merging the individual CRs correctly.
Once the new version of the spec is published, the Maintainer merges the agreed meeting branch back into the main branch.
The Maintainer, with appropriate assistance from the relevant delegates, is responsible for taking care of any changes caused by the rejection of CRs by SA plenary and ensuring the resulting deliverables pass syntax checking.
The Maintainer tags the head of the release branch following tagging convention given in Section 4.
The Maintainer removes the meeting branch.
4 – Branching and Tagging conventions
We propose the following convention for branches in each repository associated with a deliverable.
	Branch
	Description
	Example

	main
	Latest versions of each deliverable and release
	main

	meeting/{SA3 LI meeting number}

	Branch representing agreement of a SA3LI meeting.
The meeting number is taken from the portal with prefixes, '#' and '-' characters removed.
	meeting/LI77e

	cr/{deliverable}/{CR number}

	Branch representing a CR.
The deliverable is given by the TS number with non-numeric characters removed.
The CR number is taken directly from the CR.
	cr/33128/0077

The output of each meeting is tagged as given below.
	Tag
	Description
	Example

	output/{SA plenary meeting number}
	Output of a meeting.
The SA plenary meeting number is taken from the portal with prefixes and '#' character removed.
	output/86e

	spec/{deliverable}/{version}

	A specific version of a deliverable
	spec/33128/16.4.0/

The release notes for each tag contain the relevant extract from the document’s revision history, indicating which CRs were accepted.
Annex A – Forge repo creation requests
This Annex contains the request forms required to create the repositories as described in section 2.
SA3LI
Repository Title: SA3LI
Repository URI: SA3LI
Repository namespace: rep/SA3LI
Repository description: SA3LI formal language deliverables
Issue tracker requested: Yes
Issue tracker type (Bugzilla / Gitlab): Gitlab
Issue tracker specific requirements: None
Wiki pages requested: Yes
Visibility: Public
Mirror on Github: No
Other requirements: None

Annex B – Repository configuration
We propose each repository is configured as follows:
Permissions
Delegates with a Forge account and who request access to the repository are given Developer access.
Developers may do the following
Create new public branches
Push commits to unprotected branches
Create merge requests
Contribute to the Issues and Wiki areas
Only Maintainers are permitted to the following:
Accept Merge Requests on protected branches (meetings and releases)
Create tags
Merge Requests
The repository Merge Method is set to “Merge commit with semi-linear history”. This only allows merges when fast-forward merging is possible, but allows the user to rebase automatically via the GUI.
Merge Requests are allowed to be merged even if the CI/CD pipeline fails. This allows CRs that fail the pipeline to still be agreed, although this shall only be done strictly by exception.
Branches
The default branch is set to "main", and is protected.
Meeting and release branches are protected.
CI/CD
A CI/CD pipeline is created to automatically check all commits for ASN.1 or XSD syntax errrors and contraventions of the drafting rules. This is done by maintaining a GitLab runner which can execute the CI/CD YAML file maintained in the repository.
