
3GPP TSG-SA3LI Meeting #80-LI-e-a
S3i210008
e-meeting 25th Jan – 29th Jan 2021

Source:
PIDS
Title:
Discussion on LI state information transfer between POIs/TFs
Document for:
Discussion

Agenda Item:
7.1
1
Decision/action requested

This discussion document argues the need to specify the policies on transferring LI state information from POIs and TFs to other POIs and TFs in case of dynamic scaling or dynamic reallocation.
2
References

[1]
3GPP TS 23.501, System architecture for the 5G System (5GS)
[2]
3GPP TS 33.127, Lawful Interception (LI) architecture and functions
3
Discussion
3.1
Introduction
The 5GC architecture specified in TS 23.501 [1] includes the possibility of having NF instances sharing UE related information with each other, mostly for implementations of 5GC based on a cloud-native/microservices architecture, in which the lifespan of instances is very short. The LI architecture specified in TS 33.127 [2] only partially addresses how to share LI state information between these instances.
3.2.
Background
[image: image1.png]SMF set

SM context SM context

Following TS 23.501 [1], NFs can operate in so called NF sets. These sets of functions share their state information by using a shared UDSF. One function that is expected to make use of this feature in cloud-native 5GC architectures is the SMF. In Figure 1, a set of NFs (in this case SMFs) share their context information with each other through a shared UDSF. Continuing with the SMF example, the collection of SMFs in a set will handle requests based on which SMF is available. When an SMF has handled a request, the Session Management (SM) context is stored in the UDSF. When a new request to, for example, modify or release a PDU-session arrives, most likely a different SMF from the SMF set is assigned to handle that request. The new SMF first has to retrieve the SM context for the particular PDU-session from the UDSF before it can execute the request, see Figure 2. The UDSF can be an instance serving only the SMFs in the set or a UDSF shared also with other NFs in the system.
[image: image2.png]Sends
UE context

informatio
AMF 1 AMF 2

[image: image3.png]Stores Retrieves
UE context UE context

information information
AMF 1 UDSF AMF 2

Again in the SMF example, the SMF contains both an IRI-POI, for interception and delivery of IRI messages to the MDF, and a CC-TF that will control the interception of the user communication in the UPF. Therefore, it is necessary to consider the implications of the stateless behaviour of an SMF for lawful interception. It is expected that the CC-TF maintains some context information (LI state) in order to control the CC-POI at the UPF. Due to the stateless nature of SMFs and the dynamic allocation of handling request by SMFs in an SMF set, the context information from the CC-TF in an SMF has to be shared with the other SMFs in the same SMF set. This is also applicable to other NF sets which contain LI functions. In other words, within an NF set the LI state must be stored and shared between the POIs and TFs of the NFs in that NF set. See possible solutions in Section 3.4.
As specified in TS 23.501 [1], the AMF is considered stateful, but can be distributed and scaled upon demand. As such, TS 23.501 [1] clause 5.21.2 specifies AMF management with procedures for adding/updating, removal and auto-recovery. The specification in TS 23.501 AMF management, covers how the information is transferred between AMFs in an AMF set, which is a type of NF set, but it doesn’t specify how the state information is given to the first AMF in an NF set, or retrieved from the last one. This is relevant for the AMF because the AMF is a stateful function. For the planned removal of an AMF in a set two procedures have been specified for transferring the UE context to the new AMF. The UE context can be stored in a UDSF and retrieved by the new AMF in the set (see Figure 3), or the UE context can directly be transferred between the two AMFs in a set (see Figure 4).
As the AMF contains an IRI-POI, when an AMF is removed the new AMF needs to continue the interception and delivery of IRI to the MDF. In order to do this, the IRI-POI in the AMF that is to be removed needs to transfer LI state information to the IRI-POI in the new AMF.
[image: image4.png]SMF set

LI
unction

[image: image5.png]function function

i LI state
l LI storage I

function

The LI architecture introduced in TS 33.127 [2] forbids sharing LI information through a shared UDSF/UDR unless it is specifically authorized by the LICF (clause 6.2.7). On top of that, sharing LI context information directly between AMFs is undesirable, as it removes the involvement (and thereby reducing the control) of the ADMF.
3.3
Issues

The current LI architecture doesn’t specify how to handle LI context information in POIs and TFs that require sharing this information with other LI functions. This problem affects directly the LI functionality in NF sets and AMFs, but they may be addressed separately, choosing different solutions for each.

For NF sets, a possible solution would be allowing them to share LI state information through a shared secure UDSF/UDR per set of NFs. The TFs and POIs in the NFs can be given access to this secured (part of the) UDSF/UDR during provisioning (see Section 3.4.2). Alternatively, these sets could use a common secure storage function accessed through the ADMF to share their LI state information (see Section 3.4.3).
In the case of sharing LI information between AMFs in different NF sets (in case of initializing a new AMF set or removing an existing AMF set), the solutions are similar. The LI state information can be transferred through a shared and secure (part of a) UDSF/UDR, see Section 3.4.4. Alternatively, the LI functions in the AMF can access a common LI storage through the ADMF, see Section 3.4.5.
3.4 Possible solutions

There are different solutions to share LI state information between LI functions. The solutions proposed here share some common features, which are grouped in Section 3.4.1. The specifics for each solution are shown in the following Sections 3.4.2 – 3.4.5.

3.4.1 Common features

All the following solutions require that the LI functions in a cloud-native environment must update the shared LI information at the end of their life cycle. This is currently not specified in TS 33.127 [1], which can cause malfunctions in those architectures. This can be specified in TS 33.127 clause 8.4 (Virtualised LI security), or 8.5 (Points of Interception), as this issue concerns the life-cycle management of virtualised POIs and TFs. One possibility is adding in clause 8.4.3 (Virtualised LI function implementation) the following text:

“If a virtualised LI function has retrieved LI state information from a secure shared storage and it is terminated, it shall update its current LI state on the secure shared storage.”
On top of that, all the following solutions require that the LIPF provisions the LI functions with credentials to access the secure shared storage functions used for sharing LI state. This provisioning can be done though the LI_X1 interface, as TS 33.127 clause 5.4.4.2 only mentions some examples, it is not an exhaustive list. The following item can be added in the clause to add clarity on the types of information that can be provisioned using LI_X1:

“- Credentials to access secure shared storage functions”

3.4.2 NF set problem, solution 1: Shared external storage

[image: image6.png]SM context

function functlon functlon

m LICF
I!I!l:ai LI storage I

LI state

[image: image7.png]Stores Retrieves UE
UE context context
information information

LI LI LI
function Stores . storage . Retrieves function
LI state LI state

information information

For NF sets, a possible solution would be allowing NF sets to share LI state information through a shared secure UDSF/UDR per set of NFs. The UDSF holding the LI state can be a secured part of the same UDSF used for storing the SM context (see Figure 5, example for SMFs), or it can be a separate UDSF only for LI state information (see Figure 6, example for SMFs). The TFs and POIs in the NFs can be given access to this secured (part of the) UDSF/UDR during provisioning.

[image: image8.png]Stores Retrieves UE
UE context context
information information

LI
function

LI
function

Stores !) Retrieves
LI state LI storage LI state
information information

[image: image9.png]Sends
UE context
information

LI LI

function Stores Retrieves function
LI state LI state
information information

l LI storage I

With this solution the ADMF retains most of the control over the LI data. The LICF must provision the POIs/TFs to give them access to the LI storage, and it can audit and modify the contents of the LI storage. On the other hand, it doesn’t have fine grain control, not being able to deny or monitor individual requests.

This approach has also some advantages over the solution introduced in Section 3.4.3, it frees resources from the LICF reducing its responsibilities, and can potentially reduce the latency and network load by placing the LI storage close to the producers and consumers.
This solution can be easily specified by modifying the following text in clause 6.2.7 of 3GPP TS 33.127 [2]:
“LI data stored in a UDSF/UDR shall only be accessible by the specific individual POI for which the UDSF/UDR is storing data and that data shall not be shared between POIs unless specifically authorised by the LICF within the ADMF.”

This is a direct limitation on the possibility to share LI data between the POIs of the NFs in the same NF set. The restriction imposes that the LICF is used to authorise access to the LI data for those POIs in the same NF set. However, there is no procedure defined how a LICF would be able to provide authorization. The following requirement would already be enough:

“LI data stored in a UDSF/UDR shall only be accessible by the specific individual POI or TF, or by the POIs and TFs of NFs in the same NF set, for which the UDSF/UDR is storing data and that data shall not be shared between POIs outside the NF set unless specifically authorised by the LICF within the ADMF.”

This change allows by default that all the POIs/TFs in the set can access be granted access to the UDSF/UDR storing LI data, not requiring specific authorization from the LICF. Functionally, access could only be granted by the LICF, as the credentials to access the LI storage are only available to the ADMF and other NFs in the set, but these NFs communicate LI information with each other using the same LI storage that the new NF needs the credentials for. The only way an NF can get access to the LI storage without the LICF provisioning it is if another NF publishes the credentials in an insecure storage, which breaches other LI security clauses.

3.4.3 NF set problem, solution 2: LICF controlled storage
[image: image10.png]Sends
UE context
information

function

Stores
LI state
information

I!I!l:al LI storage I

function

Retrieves
LI state

LI state

The problem of sharing LI state information between NF sets can also be solved by granting access to a secure storage controlled directly by the ADMF, see Figure 6. This storage can be a UDSF accessible only from the LICF (as pictured in Figure 7 using an SMF set as an example) or some other kind of internal storage of the ADMF.

[image: image11.png]2-Request

2-Request
SM context

5 - Update SM context

This approach places the responsibility directly on the ADMF to handle the distribution of LI state information. The SMFs access and modify LI state information only through the LICF. This can be done using the LI_X1 interface or with the addition of a separate interface.

This solution solves some of the issues of the solution introduced in 3.4.2, namely, the LICF has low level control of the LI state information. On the other hand it has some drawbacks: The LICF and the location of the LI storage can add latency to the process of loading LI state information, and it adds load and complexity to the ADMF, potentially needing even to define a new interface. This solution would be mostly used in cloud-native environments, so the rate of requests to access and modify LI state information can be expected to be very high.

3.4.4 AMF problem, solution 1: Shared external storage

The transfer of LI state information between AMFs in different AMF sets can follow a similar structure to the solution introduced for SMFs in 3.4.2. The POIs in the AMFs can be given access to a (part of a) UDSF which stores the LI state information required. If the AMFs already use a UDSF for sharing UE context information, the same UDSF can be used for sharing LI information, using a secured partition of the UDSF as in Figure 8. It is also possible to use a separate UDSF altogether as in Figure 9. Instead, if the AMFs send the UE context information directly to each other there needs to be a UDSF for the LI state information, see Figure 10. It is not possible to send LI state information directly between AMFs, as it makes it difficult for the ADMF to keep track of which data is accessible to which LI function.

With these solutions the ADMF retains most of the control over the LI data. The LICF must provision the POIs to give them access to the LI storage, and it can audit and modify the contents of the LI storage. On the other hand, it doesn’t have fine grain control, not being able to deny or monitor individual requests.

This approach has also some advantages over the solution introduced in Section 3.4.5, it frees resources from the LICF reducing its responsibilities, and can potentially reduce the latency and network load by placing the LI storage close to the producers and consumers.
This solution doesn’t contradict any clause in TS 33.127 [2]. It suffices to specify this possibility in the behaviour of the interception in the AMF (TS 33.127 clause 6.2.2.x)
3.4.5 AMF problem, solution 2: LICF controlled storage
Sharing LI state information between AMFs in different sets can also be achieved using a similar topology to the one introduced in 3.4.3. The AMFs share UE context information independently from LI state information (can be either directly or through some UDSF), and the LI state information is shared through the LICF, see Figure 10. The ADMF has exclusive access to some sort of LI storage function. In Figure 11, the LI storage is illustrated as a UDSF accessible only to the LICF, but it can also be implemented within the ADMF.

This approach places the responsibility directly on the ADMF to handle the distribution of LI state information. The AMFs access and modify LI state information only through the LICF. This can be done using the LI_X1 interface or with the addition of a separate interface.

This solution addresses some of the issues of the solution introduced in 3.4.4, namely, the LICF has low level control of the LI state information. On the other hand it has some drawbacks: The LICF and the location of the LI storage can add latency to the process of loading LI state information, and it adds load and complexity to the ADMF, potentially needing even to define a new interface. This solution would be mostly used in cloud-native environments, so the rate of requests to access and modify LI state information can be expected to be very high.

This solution doesn’t contradict any clause in TS 33.127 [2]. It suffices to specify this possibility in the behaviour of the interception in the AMF (TS 33.127 clause 6.2.2.x).
4
Detailed proposal

There are three options to resolve the issues exposed. Our first preference is option 1. If no consensus on that option is reached, then our preference is for option 2; and so on.
Option 1: Use the NF set solution 1 and AMF solution 1 (Shared external storage). Add the texts proposed in Section 3.4.1 (Possible solutions – Common Features), Section 3.4.2 (Possible solutions – NF set problem solution 1) and Section 3.4.4 (Possible solutions – AMF problem solution 1).

Option 2: Specify both solutions and give the operator the choice to implement the desired one. Add the texts proposed in Section 3.4.1 (Possible solutions – Common Features), Section 3.4.2 (Possible solutions – NF set problem solution 1)), Section 3.4.3 (Possible solutions – NF set problem solution 2), Section 3.4.4 (Possible solutions – AMF problem solution 1) and Section 3.4.5 (Possible solutions – AMF problem solution 1).

Option 3: Use the NF set solution 2 and AMF solution 2. Add the texts proposed in Section 3.4.1 (Possible solutions – Common Features), Section 3.4.2 (Possible solutions – NF set problem solution 1) and Section 3.4.4 (Possible solutions – AMF problem solution 1).

We propose specifying the LI state transfer of information between POIs/TFs in case of dynamic scaling or dynamic reallocation with option 1.
Figure � SEQ Figure * ARABIC �1� - SM context transfer in SMF sets

Figure � SEQ Figure * ARABIC �2� - Different SMFs in a set sharing SM context information possibly related to the same PDU session

Figure � SEQ Figure * ARABIC �4� - AMFs sharing UE context directly

Figure � SEQ Figure * ARABIC �3� - AMFs sharing UE context using a shared UDSF

Figure � SEQ Figure * ARABIC �5� - SMF set sharing LI state information reusing an existing UDSF

Figure � SEQ Figure * ARABIC �6� - SMF set sharing LI state information through a separate UDSF

Figure � SEQ Figure * ARABIC �7� - SMF set sharing LI state information with the ADMF as mediator

Figure � SEQ Figure * ARABIC �8� - AMFs sharing LI state information reusing the same UDSF that is used for UE context information

Figure � SEQ Figure * ARABIC �10� - AMFs using a UDSF to share LI state information and sending UE context information directly

Figure � SEQ Figure * ARABIC �9� - AMFs using two separate UDSFs, one for LI state information and another for UE context information

Figure � SEQ Figure * ARABIC �11� - AMFs sharing LI state information using the LICF as a mediator

