3GPP SA3LI#74-Bis-LI
S3i190511

Basking Ridge (NJ), US, 4 – 6 September 2019

Source:
NTAC

Title:
Copy of ETSI TC LI discussion on XID issue, for information

Document for:
Information

Agenda Item:
4 - TS 33.128

Work Item / Release:
-

1 - Problem Statement
TS 103 221-1 (X1) defines an XID as the unique identifier for a Task object on an NE.

At the same time, TS 103 221-2 (X2/3) adds the XID to the header of every PDU, so that the MDF can correlate X3/X3 PDUs associated with the same task.

However, in certain scenarios - such as 5G UPF interception - where a Task is created for each communication session, this means that either

(a) the MDF must be able to tell that X2/X3 PDUs with different XIDs somehow “belong” together – which it does not currently have enough information to do

or

(b) multiple Tasks are required to have the same XID – which is explicitly forbidden by the X1 protocol.

It is not obvious that either of these approaches can be implemented without proprietary extensions.

3GPP SA3-LI have asked ETSI TC LI to investigate the possibility of standardising a resolution to this issue (see Ericsson’s discussion contribution to SA3#74-LI, document s3i190457).
2 – Background and context
TS 103 221-1 clause 5.1.2 defines an XID as follows:
“Each Task on X1 is uniquely identified by an X1 Identifier (XID) and it is handled independently of all others. The ADMF shall assign the XID as a version 4 UUID as per IETF RFC 4122 [2]. The ADMF is responsible for correlating the XID to any LI instance identifiers used to communicate with Law Enforcement. In addition, the XID is released once the Task has ended.”
This makes the primary purpose of an XID clear – it is used to identify Tasks during X1 procedures. The means that the most important property of an XID is that it is unique for any given Task on a given NE.
TS 103 221-2 re-uses the XID as a convenient way of associating X2/X3 PDUs with a particular Task, placing it in the header of every PDU. See clause 5.2.7:

“The POI shall populate the XID field with the XID associated with the intercepted product, as assigned by the relevant X1 interface (see ETSI TS 103 221-1 [1]). An XID is a UUID (see ETSI TS 103 221-1 [1], clause 5.1.2). The XID shall be given as a 128-bit unsigned integer.”
This means that XIDs are used for a second purpose - as a way of associating or correlating X2/X3 PDUs with each other.
2 – XIDs in 5G interception
3GPP SA3-LI provides an architecture for interception of packet services in 5G, given in TS 33.127 clause 6.2.3. It involves co-operation between a control-plane node (the SMF) and a user-plane node (the UPF).

The SMF is aware of long-term identifiers but does not handle any user-plane data. This is done by the UPF, which is controlled by the SMF. It is therefore necessary for the LI function in the SMF to control the LI function in the UPF. It does this via a mechanism known as “triggering”.
The relevant architecture diagram in TS 33.127 is given in Figure 6.2-4, reproduced below:

[image: image1.emf]LEMFMDF2MDF3UPFCC-POISMFCC-TFLIPFLICFLEALI_X1LI_X2LI_X3LI_HI3LI_X1LI_X1LI_X1(management)LI_HI1LI_MDFLI_ADMFMDFADMFLI_T3LI_HI2IRI-POI

3GPP SA3-LI3 has adopted ETSI TS 103 221-1 and -2 as the protocols for realising a number the interfaces, including the following:

(a) LI_X1 – between the LIPF (part of the ADMF) and the CC-TF in the SMF
(b) LI_T3 – between the SMF CC-TF and the UPF CC-POI

(c) LI_X3 – between the UPF CC-POI and the MDF3

The MDF2 will receive X2 PDUs from the SMF IRI-POI. According to TS 103 221 these will carry the XID of the Task as given over LI_X1. The MDF3 will also receive X3 PDUs from the UPF CC-POI which will carry the XID of the Task as given over LI_T3.

In principle, the LICF will be aware of the XIDs used by the UPF CC-POI and the SMF IRI-POI via the audit interface LI_X1 (Management) and can inform the MDF2/3 via LI_X1. However, this increases the complexity of implementation, and creates a race condition between session establishment at the UPF and the X1 messaging from UPF to LICF to MDF3.

[image: image2.emf]SMF IRI-POI / CC-TFLICF (ADMF)MDF3MDF2XID AXID BXID AXID BLIID 1 = XID ALIID 1 = XID BLIID 1LIID 1LIID 1 = [XID A, XID B]XID A, XID BLIID 1 = XID ALIID 1 = XID BXID A, XID BXID BUPF CC-POIXID B

Figure 1 – A naïve implementation of X1/X2/X3 in 5G

To remove this race condition, and to simplify the task of associating X2 and X3 PDUs, SA3-LI elected to add a specific restriction to LI_T3 (see TS 33.128 table 6.2.3-6):

“[The XID used over LI_T3 must be] set to the same XID associated with the interception in the SMF.”

This simplifies association of X2 and X3 traffic at the MDF considerably since they will carry the same XID.

[image: image3.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AXID AXID AXID ALIID 1 = XID ALIID 1 = XID ALIID 1LIID 1LIID 1 = XID AXID AXID ALIID 1 = XID ALIID 1 = XID A

Figure 2 – X1/X2/X3 as specified by TS 33.128
But there is a problem. Sessions at the SMF are associated with long term identifiers; they will tend to have the same lifetime as the underlying warrant. But sessions at the UPF are associated with short-term identifiers – each one is associated with a new bearer, and therefore potentially a new communications session.

It is possible that those sessions may be simultaneous. In this case, the SMF CC-TF needs to create multiple simultaneous Task objects on the UPF CC-POI. But each is meant to have the same XID as the parent Task on the SMF CC-TF – and this results in the SMF trying to create multiple Tasks with the same XID. This violates the key principle of uniqueness described above and will result in a protocol error.

[image: image4.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AXID AXID A (session 1)LIID 1 = XID ALIID 1 = XID ALIID 1 (session 1)LIID 1 = XID AXID A, XID A again!XID ALIID 1 = XID ALIID 1 = XID AXID A again!XID A (session 2)LIID 1 (session 2)XID A (session 1)XID A (session 2)LIID 1 (session 1)LIID 1 (session 2)

Figure 3 – XID collision for multiple UPF sessions
This problem can in principle occur in other places that multiple “triggered” Tasks can be created for the same target at the same time, including over LI_T2 (e.g. packet data header summaries created by an UPF IRI-POI).
3 – Possible solutions
Several possible solutions to this problem have been proposed and discussed at SA3#74-LI.

3.1 - Allow multiple Tasks with the same XID

Since the problem becomes apparent on LI_T3, the X1 protocol could be changed to allow multiple Tasks to be created with the same XID. Instead, Tasks would instead be identified by a combination of XID and something else (most likely Correlation Identifier). This allows Tasks at the UPF CC-POI to be independently created for each session.

[image: image5.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AXID A + CID 1XID A (CID 1)LIID 1 = XID ALIID 1 = XID ALIID 1 (CIN 1)LIID 1 = XID AXID A + CID1, XID A + CID2XID A, CID1 + 2LIID 1 = XID ALIID 1 = XID AXID A (CID 2)LIID 1 (CIN 2)XID A (CID 1)XID A (CID 2)LIID 1 (CIN 1)LIID 1 (CIN 2)XID A + CID 2

Figure 4 – Allowing degenerate XIDs
However, this fundamentally changes the meaning of the XID on X1. Every X1 procedure would require altering to allow the XID to be qualified with an additional field. Since the concept of the uniqueness of the XID is central to X1, this essentially amounts to a complete rewrite of TS 103 221-1.

Recommendation: Do not adopt this approach.
3.2 Provide a “Traffic / Product identifier” instead of an XID
Since the root cause of the problem is due to re-using XIDs to label traffic (in addition to their intended primary function of identifying Tasks on X1), then it can be argued that a better is solution is to ask SA3-LI to remove the restriction that the SMF CC-TF and UPF POI must share an XID. This requires that we solve the problem of associating X2/X3 PDUs at the MDF.

Since the MDF will be aware of the SMF CC-TF’s XID, then one solution is to extend X1 to allow the SMF CC-TF to instruct the UPF CC-POI to use the SMF’s CC-TF’s XID rather than the UPF CC-POI’s XID when creating X3 PDUs. This would allow the MDF to correlate X2/X3 PDUs easily and is still broadly consistent with the statement in TS 103 221-2 that the X3 XID should be the one “as assigned by the relevant X1 interface”. In effect SA3-LI would deciding that the LI_X1 interface is the “relevant” X1 interface for LI_X3, rather than LI_T3.

This change would require an additional field to be added to LI_X1. This can be done either by ETSI TC LI or as an extension field by 3GPP SA3-LI.

[image: image6.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AXID A (CID 1)LIID 1 = XID ALIID 1 = XID ALIID 1 (CIN 1)LIID 1 = XID AXID B, XID CXID A, XID B, XID CLIID 1 = XID ALIID 1 = XID AXID A (CID 2)LIID 1 (CIN 2)XID A (CID 1)XID A (CID 2)LIID 1 (CIN 1)LIID 1 (CIN 2)XID B (use XID A on LI_X3)XID C (use XID A on LI_X3)

Figure 4 – Supplying a “presentation” XID for LI_X2/3
If more substantial changes to TS 103 221-2 are acceptable to both groups, then this approach can be taken further. The XID field in the X2/X3 PDUs can be replaced with a different, separate, identifier. The sole purpose of this identifier would be to indicate that X2/X3 PDUs belong to the same “interception”, in the same way that the LIID is used in LI_HI2/HI3. Indeed, this would effectively be an internal “xLIID”.

[image: image7.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AxLIID AXID BxLIID AxLIID A (CID 1)LIID 1 = xLIID ALIID 1 = xLIID ALIID 1 (CIN 1)LIID 1 = XID A, xLIID AXID B, XID CXID A, XID B, XID CLIID 1 = xLIID ALIID 1 = xLIID AxLIID A (CID 2)LIID 1 (CIN 2)xLIID A (CID 1)xLIID A (CID 2)LIID 1 (CIN 1)LIID 1 (CIN 2)XID C xLIID A

Figure 5 – Replacing XID with xLIID on X2/3
This approach requires more substantial changes to TS 103 221-2 but could be considered a more proper separation of concerns (between identifying Tasks and labelling X2/X3 PDUs). The new identifier would no longer be required to be an XID of any sort, it could be made shorter than 128 bits. This may also be an advantage for LI_X3, which may be sensitive to the size of the X3 header.

Recommendation: Consider adopting this fix in the short-term
3.3 Allow multiple separate Target Identifiers per Task

TS 103 221-1 allows a Task to have multiple Target Identifiers, all of which must be present for traffic to be intercepted. This is intended to provide an easy way of providing multiple pieces of information (e.g. both an IP address and a port) without defining highly structured types.

If multiple sets of Target Identifiers were allowed, such that an NE could intercept traffic meeting the criteria in any of the sets, then each new session at the UPF CC-POI could be handled by modifying the UPF CC-POI Task to include a new set of Target Identifiers. This removes the need to add a second Task with the same XID.

[image: image8.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID AXID ATarget = XXID A (CID 1)LIID 1 = XID ALIID 1 = XID ALIID 1 (CIN 1)LIID 1 = XID AXID A (Target is X or Y)XID ALIID 1 = XID ALIID 1 = XID AXID A (CID 2)LIID 1 (CIN 2)XID A (CID 1)XID A (CID 2)LIID 1 (CIN 1)LIID 1 (CIN 2)XID A Target = X or Y

Giving the Task object the flexibility to describe multiple alternative Target Identifiers could well be a powerful and useful feature more widely. However, it remains to be seen whether it can be done without overcomplicating the definition of the Task object.

Recommendation: Do not adopt this approach in the short term (although it could still be considered in the longer term).
3.4 Semi-deterministic XIDs

It may be possible to agree a scheme for XIDs such that the MDF can identify X2/X3 PDUs which “belong” together without being informed in advance.
An example: suppose that the ADMF always assigns XIDs with the last n bits set to zero. All SMF IRI-POI Tasks (and therefore all X2 PDUs generated by it) will have an XID with the last n bits set to zero. The ADMF informs the MDF of these XIDs, which knows that all XIDs that are identical modulo the last n bits belong to the same interception session.
When the SMF CC-TF comes to trigger the UPF CC-POI over LI_T3, each new XID is created by OR-ing the parent XID and some other number (e.g. a session counter). This creates a set of XIDs which are identical except for the last n bits. This makes the XIDs unique over LI_T3, resolving the XID collision issue. It also allows the MDF to identify traffic that belongs together by comparing the first 128 – n bits.

[image: image9.emf]SMF IRI-POI / CC-TFUPF CC-POILICF (ADMF)MDF3MDF2XID A0XID A1XID A1 (CID 1)LIID 1 = XID ALIID 1 = XID ALIID 1 (CIN 1)LIID 1 = XID A0XID A1, XID A2XID A0, XID A1, XID A2LIID 1 = XID AnLIID 1 = XID AnXID A2 (CID 2)LIID 1 (CIN 2)XID A0 (CID 1)XID A0 (CID 2)LIID 1 (CIN 1)LIID 1 (CIN 2)XID A2

This change only requires a scheme to be identified and described in TS 33.128. It requires no additional changes or fields to any of the ETSI specifications. It does, however, require imposing additional structure on a UUID, which some people may find distasteful!
Recommendation: Consider adopting this fix in the short-term
4 – Recommendation and next steps
Out view is as follows:

· If we wish to make minimal changes to the ETSI specifications, we should adopt solution 3.4 (semi-deterministic XIDs) since this can be done entirely in SA3-LI.

· If we are happy to make changes to the ETSI specifications, then we should consider adopting solution 3.2 (providing a “traffic / product ID” instead of an XID).

- page 1 of 1 -

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
XID A
XID A (session 1)
LIID 1 = XID A
LIID 1 = XID A
LIID 1 (session 1)
LIID 1 = XID A
XID A, XID A again!
XID A
LIID 1 = XID A
LIID 1 = XID A
XID A again!
XID A (session 2)
LIID 1 (session 2)
XID A (session 1)
XID A (session 2)
LIID 1 (session 1)
LIID 1 (session 2)

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
XID A (CID 1)
LIID 1 = XID A
LIID 1 = XID A
LIID 1 (CIN 1)
LIID 1 = XID A
XID B, XID C
XID A, XID B, XID C
LIID 1 = XID A
LIID 1 = XID A
XID A (CID 2)
LIID 1 (CIN 2)
XID A (CID 1)
XID A (CID 2)
LIID 1 (CIN 1)
LIID 1 (CIN 2)
XID B
(use XID A on LI_X3)
XID C
(use XID A on LI_X3)

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
XID A
Target = X
XID A (CID 1)
LIID 1 = XID A
LIID 1 = XID A
LIID 1 (CIN 1)
LIID 1 = XID A
XID A (Target is X or Y)
XID A
LIID 1 = XID A
LIID 1 = XID A
XID A (CID 2)
LIID 1 (CIN 2)
XID A (CID 1)
XID A (CID 2)
LIID 1 (CIN 1)
LIID 1 (CIN 2)
XID A
Target = X or Y

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A0
XID A1
XID A1 (CID 1)
LIID 1 = XID A
LIID 1 = XID A
LIID 1 (CIN 1)
LIID 1 = XID A0
XID A1, XID A2
XID A0, XID A1, XID A2
LIID 1 = XID An
LIID 1 = XID An
XID A2 (CID 2)
LIID 1 (CIN 2)
XID A0 (CID 1)
XID A0 (CID 2)
LIID 1 (CIN 1)
LIID 1 (CIN 2)
XID A2

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
xLIID A
XID B
xLIID A
xLIID A (CID 1)
LIID 1 = xLIID A
LIID 1 = xLIID A
LIID 1 (CIN 1)
LIID 1 = XID A, xLIID A
XID B, XID C
XID A, XID B, XID C
LIID 1 = xLIID A
LIID 1 = xLIID A
xLIID A (CID 2)
LIID 1 (CIN 2)
xLIID A (CID 1)
xLIID A (CID 2)
LIID 1 (CIN 1)
LIID 1 (CIN 2)
XID C xLIID A

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
XID A + CID 1
XID A (CID 1)
LIID 1 = XID A
LIID 1 = XID A
LIID 1 (CIN 1)
LIID 1 = XID A
XID A + CID1, XID A + CID2
XID A, CID1 + 2
LIID 1 = XID A
LIID 1 = XID A
XID A (CID 2)
LIID 1 (CIN 2)
XID A (CID 1)
XID A (CID 2)
LIID 1 (CIN 1)
LIID 1 (CIN 2)
XID A + CID 2

SMF IRI-POI / CC-TF
LICF (ADMF)
MDF3
MDF2
XID A
XID B
XID A
XID B
LIID 1 = XID A
LIID 1 = XID B
LIID 1
LIID 1
LIID 1 = [XID A, XID B]
XID A, XID B
LIID 1 = XID A
LIID 1 = XID B
XID A, XID B
XID B
UPF CC-POI
XID B

SMF IRI-POI / CC-TF
UPF CC-POI
LICF (ADMF)
MDF3
MDF2
XID A
XID A
XID A
XID A
LIID 1 = XID A
LIID 1 = XID A
LIID 1
LIID 1
LIID 1 = XID A
XID A
XID A
LIID 1 = XID A
LIID 1 = XID A

LEMF
MDF2
MDF3

UPF
CC-POI

SMF

CC-TF
LIPF
LICF
LEA
LI_X1
LI_X2
LI_X3
LI_HI3
LI_X1
LI_X1
LI_X1
(management)
LI_HI1
LI_MDF
LI_ADMF
MDF
ADMF
LI_T3
LI_HI2
IRI-POI

