Page 1

3GPP TSG-SA WG3 Meeting #93
S3-183649
Spokane (US), 12-16 November 2018

	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	-
	rev
	-
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:

	Adopting a more normative language in clause 13

	
	

	Source to WG:
	Telekom Deutschland GmbH, Nokia

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-Sec
	
	Date:
	2018-11-10

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Due to the hasty creation of clause 13, large parts of its paragraphs contain only descriptive language that is not fit for a normative specification.

	
	

	Summary of change:
	The present document attempts to establish a more normative language throughout clause 13.

	
	

	Consequences if not approved:
	Unclear specification.

	
	

	Clauses affected:
	13.1, 13.2.2.1, 13.2.2.2, 13.2.2.4.1, 13.2.2.4.2, 13.2.2.4.3, 13.2.2.4.4, 13.2.3.3, 13.2.3.4, 13.2.4.1, 13.2.4.3.1.2, 13.2.4.3.2, 13.2.4.4, 13.2.4.4.1, 13.2.4.5.1, 13.2.4.5.2, 13.2.4.7, 13.2.4.8, 13.2.4.9, 13.4.1.1, 13.4.1.2, 13.5

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	This draftCR builds on changes agreed preliminary during SA3#92bis.

*** First Change ***
13.1
Protection at the network or transport layer

All network functions shall support TLS. Network functions shall support both server-side and client-side certificates.

The TLS profile shall follow the profile given in Annex E of TS 33.310 [5] with the restriction that it shall be compliant with the profile given by HTTP/2 as defined in RFC 7540 [47].

TLS shall be used for transport protection within a PLMN unless network security is provided by other means.

NOTE a:
Regardless whether TLS is used or not, NDS/IP as specified in TS 33.210 [3] and TS 33.310 [5] can be used for network layer protection.

NOTE b:
In case interfaces are trusted (e.g. physically protected), there is no need to use cryptographic protection.

If there are no IPX entities between the SEPPs, TLS shall be used between the SEPPs. If there are IPX entities between SEPPs, application layer security on the N32 interface between SEPPs shall be used for protection between the SEPPs. Application Layer Security solutions is specified in clause 5.9.3 (requirements) and clause 13.2 (procedures).

NOTE 1:
Void

NOTE 2: Void.
*** Next Change ***
13.2.2
N32-c connection between SEPPs

13.2.2.1
General

When the negotiated security mechanism (clause 13.5) to use over N32 is Application Layer Security, the SEPPs shall use the established TLS connection (henceforth referred to as N32-c connection) to negotiate the N32-f specific associated security configuration parameters required to enforce Application Layer Security on HTTP messages exchanged between different PLMNs.
The N32-c connection is used for the following:

-
Key agreement: The SEPPs independently shall export keying material associated with the established N32-c connection between them and shall use it as the pre-shared key for generating the shared session key required. This is based on RFC 5705 [59] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [60] is used.

-
Parameter exchange: The SEPPs shall exchange security related configuration parameters that are needed by the SEPPs to protect HTTP messages exchanged between the two Network Functions (NF) in their respective networks.

-
Error handling: The receiving SEPP shall send an error signalling message to the peer SEPP when it detects an error on the N32-c or N32-f interface.

The following security related configuration parameters may be exchanged between the two SEPPs:

a.
Modification policy – Modification policy, as specified in clause 13.2.z.4, indicates which IEs can be modified by an IPX provider of the sending SEPP.

b.
Cipher suites for confidentiality and integrity protection when Application Layer Security is used to protect HTTP messages between them.

c.
N32-f precontext identifier values, that’s used by each SEPP to construct a common N32-f context ID that identifies the set of security related configuration parameters, when it receives a protected message from a SEPP in a different PLMN.

13.2.2.2
Procedure for Key agreement and Parameter exchange

1.
The two SEPPs shall perform a cipher suite negotiation to agree on a cipher suite to use for protecting NF service related signalling over N32-f.

1a. The SEPP which initiated the TLS connection shall send a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s supported cipher suites. The cipher suites are ordered in initiating SEPP’s priority order. The SEPP shall provide a N32-f precontext ID for the responding SEPP. The precontext IDs are 32-bit random integers, represented as 0-left padded strings of hexadecimal digits

1b. The responding SEPP shall compare the received cipher suites to its own supported cipher suites and shall select, based on its local policy, a cipher suite, which is supported by both initiating SEPP and responding SEPP.

1c. The responding SEPP shall send a Parameter Exchange Response message to the initiating SEPP including the selected cipher suite for protecting the NF service related signalling over N32. The responding SEPP shall provide a N32-f precontext ID for the initiating SEPP.

1d. The SEPPs shall create the N32-f context ID as follows:

Initiator's N32-f precontext ID | responder's N32-f precontext ID

2.
The two SEPPs may perform exchange of Data-type encryption policies and Modification policies. Both SEPPs shall store the protection policies sent by peer SEPP:

2a. The SEPP, which initiated the TLS connection, shall send a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s protection policies listed in clause 13.2.z.

2b. The responding SEPP shall store the policies if sent by the initiating SEPP.

2c. The responding SEPP shall send a Parameter Negotiation Response message to the initiating SEPP with the responding SEPP’s suite of protection policies.

2d. The initiating SEPP shall store the protection policy information if sent by the responding SEPP,

3.
The two SEPPs shall exchange IPX security information lists that contain information on IPX public key/Certificate that’s needed to verify IPX modifications at the receiving SEPP.

4.
The two SEPPs shall export keying material from the TLS session established between them using the TLS export function as specified in RFC 5705 [zz] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [yy] is used. The exported key shall be used as the master key to derive session keys and IVs for the N32-f context as specified in clause 13.2.a.4.1.

The two SEPPs start exchanging NF to NF service related signalling over N32-f and shall keep the TLS session open for:

· any further N32-c communication that may occur over time while application layer security is applied to N32-f, or

· any further N32-c and N32-f communication, if TLS is used to protect N32-f.

Editor’s Note: The exact message names are to be aligned with stage 3 specifications defined by CT4.

*** Next Change ***
13.2.2.4.1
N32-f context ID

The N32-f context ID is used to refer to an N32-f context. The N32-f context ID shall be created during the N32-c negotiation and used over N32-f to inform the reveiving peer which security context to use for decryption of a received message.

The N32-f context ID shall be created by combining the two N32-f precontext IDs, obtained during the N32-c negotiation. To avoid collision of the N32-f context ID value, the N32-f precontext ID shall be selected as a random value during the exchange over N32-c.

During transfer of application data over N32-f, the N32-f context ID shall be contained in a separate IE in the metadata part of the JSON structure, see clause 13.2.a.2. The receiving part shall use this information to apply the correct key and parameters during decryption and validation.

13.2.2.4.2
N32-f peer information

The N32 "connection" between SEPPs shall be bidirectional and shall consist of the two SEPP endpoints and possibly up to two IPX providers. The SEPPs are identified by the PLMN ID and additionally a SEPP ID to distinguish between several SEPPs in the same PLMN. The remote SEPP address is necessary for routing the messages to the correct destination. The N32 peer information consists of the following parameters:

-
Remote PLMN ID;

-
Remote SEPP ID;

-
Remote SEPP address.

13.2.2.4.3
N32-f security context

The N32-c initial handshake establishes session keys, IVs and negotiated cipher suites. Counters shall be used for replay protection. Modification policies shall be identified by modification policy IDs, to be able to verify received messages that have undergone IPX modifications. The N32 security context shall consist of the following parameters:

-
Session keys

-
Negotiated cipher suites

-
Modification Policy IDs (if IPXs are used)

-
Counters

-
IVs

-
List of security information of the IPX providers connected to the SEPPs (IPX security information list)

-
IPX provider identifier

-
List of raw public keys or certificates for that IPX

13.2.2.4.4
N32-f context information

The N32 context information shall consist of the following parameters:

-
Validity

-
Usage (application layer solution)

*** Next Change ***
13.2.3.3
NF API data-type placement mapping

Each NF API data-type placement mapping shall contain the following:

-
Which IEs contain data of the type 'IMSI' or type 'NAI'.

-
Which IEs contain data of the type 'location data'.

-
Which IEs contain data of the type 'key material'.

-
Which IEs contain data of the type 'authorization token'.

Where the location of the IEs refers to the location of the IEs after the SEPP has rewritten the message for transmission over N32.

An NF API data-type placement mapping shall furthermore contain data that identifies the NF API, namely

-
The name of the NF;

-
The version;

-
An identifier;

-
The release version.

NOTE:
Larger networks can contain multiple NFs with the same API, e.g. three AMFs. The NF API policy applies to all NFs with the same API.

The NF API data-type placement mapping shall reside in the SEPP.

13.2.3.4
Modification policy

The SEPP shall contain an operator-controlled policy that specifies which IEs can be modified by the IPX provider directly related to this particular SEPP. These IEs refer to the IEs after the sending SEPP has rewritten the message.

Each PLMN-operator shall agree the modification policy with the IPX provider it has a business relationship with prior to establishment of an N32 connection. Each modification policy applies to one individual relation between PLMN-operator and IPX provider. In order to cover the complete N32 connection both involved roaming partners exchange their modification policies. Both complementary modification policies comprise the overall modification policy for this specific N32 connection.

NOTE 1:
In order to validate modifications for messages received on the N32 interface, the operator’s roaming partners will have to know the overall modification policy.

NOTE 2:
Modification includes removal and addition of new IE. IEs therefore may not be present in the rewritten message.

The IEs that the IPX is allowed to modify are specified in a list giving an enumeration of JSON paths within the JSON object created by the SEPP. Wildcards may be used in specifying paths.

This policy shall be specific per roaming partner and per IPX provider that is used for the specific roaming partner.

The modification policy shall reside in the SEPP.
For each roaming parter, the SEPP shall be able to store a policy for sending in addition to one for receiving.

The following basic validation rules shall always be applied irrespective of the policy exchanged between two roaming partners:

-
IEs requiring encryption shall not be inserted at a different location in the JSON object.

*** Next Change ***
13.2.4
N32-f connection between SEPPs

13.2.4.1
General

The SEPP receives HTTP/2 request/response messages from the Network Function. It shall perform the following actions on these messages before they are sent on the N32-f interface to the SEPP in the other PLMN:

a)
It parses the incoming message and reformats it to produce the input to JWE (clause 13.2.a.3).

b)
It applies JSON Web Encryption (JWE) [x] on the input created in a) to protect the reformatted message (clause 13.2.a.4).

c)
It encapsulates the resulting JWE object into a HTTP/2 message (as the body of the message) and sends to the SEPP in the other PLMN over the N32-f interface.

The path between the two SEPPs may take them via the cIPX and pIPX nodes. These IPX nodes may modify messages as follows:

a)
The IPX node recovers the unencrypted (cleartext) section of the HTTP message (in the JWE object), modifies it according to the modification policy, and calculates an “operations” JSON Patch object. It creates a temporary JSON object with “operations” and few other parameters for replay protection etc. (clause 13.2.a.5.1).

b)
The temporary JSON object is input into JSON Web Signature (JWS) [45] to create a JWS object (clause 13.2.a.5.2).

c)
The JWS object is appended to the received message and sent to the next hop.

The JWS objects generated by the two IPX providers form an auditable chain of modifications that shall be applied to the parsed message at the receiving end after verifying that the patches conform to the modification policy.

Encryption of IEs shall take place end to end between cSEPP and pSEPP.

A SEPP shall not include IEs in the clear that are encrypted elsewhere in the JSON object.

A SEPP shall verify that an intermediate IPX has not moved or copied an encrypted IE to a location that would be reflected back from the producer NF in an IE without encryption.

*** Next Change ***
13.2.4.3.1.2
metadata

The JSON object containing information added by the sending SEPP. It shall contain:

a) N32-f Message ID: Unique identifier (64-bit integer) representing a HTTP Request/Response transaction between two SEPPs. The N32-f Message Id is generated by the sending SEPP and included in the HTTP Request sent over the N32 interface. The receiving SEPP uses the same N32-f Message Id when it responds back with a HTTP Response. The N32-f Message Id is included in the metadata portion of the JSON structure.

b) authorizedIPX ID: string identifying the first hop IPX (cIPX or pIPX) that is authorized to update the message. This field shall always be present. When there is no IPX that’s authorized to update, the value of this field is set to “NULL”. The sending SEPP selects one of the IPX providers from the list exchanged with the other SEPP during parameter exchange over N32-c and includes its identifier value in this field.

c) N32-f Context ID: Unique identifier representing the N32-f context information used for protecting the message. This is obtained from N32-f precontext IDs exchanged during parameter exchange over N32-c (clause 13.2.y.4.1).
13.2.4.3.2
dataToIntegrityProtectAndCipher

The dataToIntegrityProtectAndCipher is a JSON array that contains all the attribute values that require both encryption and integrity protection. Attribute values may come from any part of the original HTTP message – Pseudo_Headers, HTTP_Headers and Payload.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value within the dataToIntegrityProtect block. This associates each attribute in the dataToIntegrityProtectAndCipher block with the original attribute in the dataToIntegrityProtect block. This is needed to reassemble the original message at the receiving SEPP.
13.2.4.4
Protection using JSON Web Encryption (JWE)

Protection of reformatted HTTP messages between SEPPs shall use JSON Web Encryption (JWE) as specified in IETF RFC 7516 [59]. All encryption methods supported by JWE are AEAD methods that encrypt, and integrity protect "plaintext" in one single operation and can additionally integrity protect additional data.

The dataToIntegrityProtectAndCipher and dataToIntegrityProtect blocks shall be input to JWE as plaintext and JWE Additional Authenticated Data (AAD) respectively. The JWE AEAD algorithm generates JWE encrypted text (ciphertext) and a JWE Authentication Tag (Message Authentication Code). The ciphertext is the output from symmetrically encrypting the plaintext, while the authentication tag is a value that verifies the integrity of both the generated ciphertext and the Additional Authenticated Data.

If the dataToIntegrityProtectAndCipher is not present in the rewritten HTTP message, the JWE plaintext shall be set to the string "NULL". The JWE AEAD algorithm will generate ciphertext and an authentication tag, but the ciphertext will not contain meaningful information.

The Flattened JWE JSON Serialization syntax shall be used to represent JWE as a JSON object.

The session key shared between the two SEPPs, as specified in clause 13.2.a.4.1, shall be used as the Content Encryption Key (CEK) value to the algorithm indicated in the Encryption algorithm ("enc") parameter in the JOSE header. The algorithm ("alg") parameter in the JOSE header denoting the key exchange method shall be set to "dir", i.e. "Direct use of a shared symmetric key as the CEK".

The 3GPP profile for supported cipher suites in the "enc" parameter is described in clause 13.2.4.9.

If AES GCM is used for AEAD the security considerations in 8.4 of [59] shall be taken into account. In particular, the same key shall not be used more than 232 times and an IV value shall not be used more than once with the same key.

The generated JWE object shall be transmitted on the N32-f interface in the payload body of a SEPP to SEPP HTTP/2 message.
13.2.4.4.1
N32-f key hierarchy

The N32-f key hierarchy is based on the N32-f master key generated during the N32-c initial handshake by TLS key export. The N32-f key hierarchy consists of two pairs of session keys and two pairs of IV salts, which are used in two different HTTP/2 sessions. In one Session the N32-c initiatior acts as the HTTP client and in the second the N32-c responder acts as the client.

If the exported master secret is reused to set up multiple HTTP sessions or to set up new HTTP sessions on stream ID exhaustion, a new, unique, N32-f Context-ID shall be generated to avoid key and IV re-use.

The master key shall be obtained from the TLS exporter. The export function takes 3 arguments: Label, Context, Length (in octets) of desired output. For the N32 Master key derivation, the label shall be "EXPORTER_3GPP_N32_MASTER", the Context shall be "" (the empty string) and the Length shall be 64.

Editor’s Note: The exporter label for this usage should be registered with IANA

The N32 key derivation function N32-KDF shall be based on HKDF [62] and shall use only the HKDF-Expand function as the initial key material has been generated securely:

N32-KDF (label, L) = HKDF-Expand (N32-f master key, "N32" || N32-f Context-ID || label, L),

where

-
label is a string used for key separation,

-
L is the length of output keying material in octets.

Each run of N32-KDF (label, L) produces either one session key or one IV salt.
There are two pairs of session keys and IV salts to be derived.
Note:
In AES-GCM re-use of one IV may reveal the integrity key (Joux’s Forbidden attack). The binding of session keys and IV salts to N32-f context-IDs and labels is essential to protect against inadvertent use of the same key with a repeated IV.

The labels for the JWE keys are:

-
"parallel_request_key"
-
"parallel_response_key"
-
"reverse_request_key"
-
"reverse_response_key"
The keys derived with labels starting parallel shall be used for request/responses in an HTTP session with the N32-c initiating SEPP acting as the client (i.e. in parallel to the N32-c connection). The keys derived with the labels starting reverse shall be used for an HTTP session with the N32-c responding SEPP acting as the client.

To generate the IV salts, the length is 8 and the labels are:

-
"parallel_request_iv_salt"
-
"parallel_response_iv_salt"
-
"reverse_request_iv_salt"
-
"reverse_response_iv_salt"
The 96-bit nonce for AES_GCM shall be constructed as the concatenation of the IV salt (8 octets, 64-bits) and the sequence counter, SEQ, following section 8.2.1 of [63]. The sequence counter shall be a 32-bit unsigned integer that starts at zero and is incremented for each invocation of the encryption. A different sequence counter shall be maintained for each IV salt.

Nonce = IV salt | SEQ

13.2.4.5
Message modifications in IPX

13.2.4.5.1
modifiedDataToIntegrityProtect

[image: image1.emf]modifiedDataToIntegrityProtect =

{

 ´Operations´���JSON Patch that captures

IPX provider modifications,

 ´Identity´���´IPX1",

���´Tag´���JWE Tag generated by sending

SEPP

}

Figure 13.2.4.5.1-1 Example of JSON representation of IPX provider modifications

This is a temporary JSON object generated by an IPX provider as it modifies the original message. It shall contain the following:

a)
Operations - This is a JSON string element that captures IPX modifications based on RFC 6902 [64]. If no patch is required, the operations element shall be set to NULL.

b)
Identity - This is the Identity of the IPX performing the modification.

c)
Tag – A JSON string element to capture the “tag” value (JWE Authentication tag) in the JWE object generated by the sending SEPP. This is required for replay protection.

NOTE:
Since there is no central registry that can ensure unique IPX Identities, it is expected that an IPX will include its Fully Quantified Domain Name (FQDN) in the JSON modification object.
13.2.4.5.2
Modifications by IPX

NOTE:
It is assumed that operators act as a certification authority for IPX providers they have a direct business relationship with. In order to authorize N32-f message modifications, operators sign a digital certificate for each of these IPX providers and provide it to both the IPX provider itself as well as their roaming partners to enable them to validate any modifications by this IPX provider.

Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.

The first intermediary shall parse the encapsulated request (i.e. the clearTextEncapsulationMsg in the dataToIntegrityProtect block) and determine which changes are required. The first intermediary creates an “operations” JSON document to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [64] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is NULL.

NOTE:
It is necessary to create a JWS object even if no patch is required to prevent deletion of modifications.

The first intermediary shall create a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.a.5.1. It includes its identity and the JWE authentication tag, which associates this update by the intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object shall be input to JWS to create a JWS object. The generated JWS object shall be appended to the payload in the HTTP message. The message is then sent to the next hop.
The second intermediary shall parse the encapsulated request, apply the modifications described in the JSON patch appended by the first intermediary and determine further modifications required for obtaining the desired request. These modifications shall be recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. If no patch is required, the operations element for the second JSON patch is NULL.
The second intermediary shall create a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.a.5.1. It shall include its identity and the JWE authentication tag, which associates this update by the second intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object shall be input to JWS to create a JWS object. The generated JWS object shall be appended to the payload in the HTTP message. The message is then sent to the receiving SEPP.
*** Next Change ***
13.2.4.7
Message verification by the receiving SEPP

The receiving SEPP shall decrypt the JWE ciphertext using the shared session key and the following parameters obtained from the JWE object – Initialization Vector, Additional Authenticated Data value (clearTextEncapsulatedMessage in “aad”) and JWE Authentication Tag (“tag”).

The receiving SEPP shall check the integrity and authenticity of the clearTextEncapsulatedMessage and the encrypted text by verifying the JWE Authentication Tag in the JWE object with the content encryption algorithm. The algorithm returns the decrypted plaintext (dataToIntegrityProtectAndCipher) only if the JWE Authentication Tag is correct.

The receiving SEPP shall refer to the NF API data-type placement mapping table to re-construct the original reformatted message by updating corresponding entries in clearTextEncapsulatedMessage with values in the dataToIntegrityProtectAndCipher array.

The receiving SEPP shall next verify IPX provider updates by verifying JWS signatures added by the intermediaries. For modifications by IPX provider that the receiving SEPP’s operator does not have a business relationship with, the SEPP shall verify the JWS signature, using the corresponding raw public key or certificate that is contained in the IPX provider’s security information list obtained during parameter exchange over N32-c. It shall then check that the raw public key or certificate of the JWS signature IPX's Identity in the modifiedDataToIntegrity block matches to the IPX provider referred to in the "authorizedIPX Id" field added by the sending SEPP, based on the information given in the IPX provider security information list.

The receiving SEPP shall check whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP shall apply the patches in the “operations” field in order, perform plausibility checks, and create a new HTTP request according to the "patched" clearTextEncapsulatedMessage.

13.2.4.8
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image2.emf]cSEPP pSEPP pIPX cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX

modifications to the

message

5. Protected HTTP

Request

w/IPX modification

6. Append pIPX

modifications to the

message

7. Protected HTTP

Request

w/IPX modifications

8. Verify integrity of clearText, encrypted text

Decrypt encrypted Block

Verify IPX updates in modificationsBlock and

apply them.

Reassemble the HTTP Request message.

9. Modified HTTP

Request

10. HTTP Response

11. Message rewriting and

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX

modifications in the

message

14. Protected HTTP

Response

w/IPX modification

15. Append cIPX

modifications in the

message

16. Protected HTTP

Response

w/IPX modifications

18. Modified HTTP

Response

17. Verify message.

Reassemble the HTTP response.

Figure 13.2.4.8-1 Message flow between two SEPPs

1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin reformating the HTTP Request message

a. Generating blocks (JSON objects) for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextEncapsulatedMessage block containing the following child JSON objects:

-
Pseudo_Headers

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption between two SEPPs, the attribute value shall be copied into a dataToIntegrityProtectAndCipher JSON object and the attribute’s value in the clearTextEncapsulatedMessage shall be replaced by the index of attribute value in the dataToIntegrityProtectAndCipher block.

A metadata block shall be created that contains the N32-f context ID, Message Id generated by SEPP for this request/response transaction and next hop identity.

The cSEPP shall protect dataToIntegrityProtect block and dataToIntegrityProtectAndCipher block as per clause 13.2.a.4. This results in a single JWE object representing the protected HTTP Request message.

b. Generating payload for the SEPP to SEPP HTTP message

The JWE object becomes the payload of the new HTTP message generated by cSEPP.

3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary.

4.
The first intermediary (e.g. visited network's IPX provider) shall create a new modifiedDataToIntegrityProtect JSON object with three elements:

a. The operations JSON element contains modifications performed by the first intermediary as per RFC 6902[cc].

b. The intermediary shall include its own identity in the Identity field of the modifiedDataToIntegrityProtect element.

c. The “tag” element, present in the JWE object generated by cSEPP, is copied into the modifiedDataToIntegrityProtect object. This acts as a replay protection for updates made by the first intermediary.

The intermediary shall execute JWS on the modifiedDataToIntegrityProtect JSON object and appends to the message.
5.
The first intermediary shall send the modified HTTP message request to the second intermediary (e.g. home network's IPX) as in step 3.

6.
The second intermediary shall perform further modifications as in step 4 if required. It shall further execute JWS on the modifiedDataToIntegrityProtect JSON object and append it to the message.
7.
The second intermediary shall send the modified HTTP message to pSEPP as in step 3.

Note:
The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and shall perform the following actions:

-
It extracts the serialized values from the components of the JWE object.

-
Invokes JWE decrypt function to check the integrity of the message and decrypt the dataToIntegrityProtectAndCipher block. This results in entries in the encrypted block becoming visible in cleartext.

-

The pSEPP updates the clearTextEncapsulationMessage block in the message by replacing the references to the dataToIntegrityProtectAndCipher block with the referenced decrypted values from the dataToIntegrityProtectAndCipher block.

-
It then verifies IPX provider updates of the attributes in the modificationsArray. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextEncapsulationMessage in order.
The pSEPP shall re-assemble the full HTTP Request from the contents of the clearTextEncapsulationMessage.

9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

13.2.4.9
JOSE profile

SEPPs shall follow the JWE profile defined in TS 33.210 with the restriction that it shall only use AES GCM with a 128-bit or 256-bit key.

SEPPs and IPXs shall follow the JWS profile as defined in TS 33.210 with the restriction that it shall only use ES256 algorithm.

*** Next Change ***
13.4.1.1
Service access authorization within the PLMN

OAuth 2.0 roles, as defined in clause 1.1 of RFC 6749 [43], are as follows:

a.
The Network Resource Function (NRF) shall be the OAuth 2.0 Authorization server.

b.
The NF service consumer shall be the OAuth 2.0 client.

c.
The NF service producer shall be the OAuth 2.0 resource server.

OAuth 2.0 client (NF service consumer) registration with the OAuth 2.0 authorization server (NRF)

The NF service registration procedure, as defined in clause 4.17.1 of TS 23.502 [8], shall be used to register the OAuth 2.0 client (NF service consumer) with the OAuth 2.0 Authorization server (NRF), as described in clause 2.0 of RFC 6749 [43]. The client id, used during OAuth 2.0 registration, shall be the NF Instance Id of the NF.

Access token request before service access

The following procedure describes how the NF service consumer obtains an access token before service access to NF service producers of a specific NF type.

Pre-requisite:

a.
The NF Service consumer (OAuth2.0 client) is registered with the NRF (Authorization Server).

b.
The NRF and NF service producer share the required credentials.

c. The NRF and NF have mutually authenticated each other.

[image: image3.emf]NF Service

Consumer

Authorization Server

(NRF)

1.Nnrf_AccessToken_Get Request

(Expected NF Service name(s) and NF type,

Consumer NF type, client id, ...)

3. Nnrf_AccessToken_Get Response

(access_token)

2. Authorize the

client, generate an

access token.

0. NF Service Consumer registers with the NRF.

Figure 13.4.1.1-1: NF service consumer obtaining access token before NF service access

1.
The NF service consumer shall request an access token from the NRF in the same PLMN using the Nnrf_AccessToken_Get request operation. The message shall include the NF Instance Id of the NF service consumer, expected NF service name(s), NF type of the expected NF producer instance and NF consumer.

2.
The NRF may optionally authorize the NF service consumer. It shall then generate an access token with appropriate claims included. The NRF shall digitally sign the generated access token based on a shared secret or private key as described in RFC 7515 [45].

The claims in the token shall include the NF Instance Id of NRF (issuer), NF Instance Id of the NF Service consumer (subject), NF type of the NF Service producer (audience), expected service name(s) (scope) and expiration time (expiration).

3.
If the authorization is successful, the NRF shall send the access token to the NF service consumer in the Nnrf_AccessToken_Get response operation. Otherwise it shall reply based on Oauth 2.0 error response defined in RFC 6749 [43].

Editor’s Note: The service names need to be aligned with CT4 definitions in TS 29.510

Access token request for a specific NF Producer/NF Producer service instance

The NF service consumer shall request an access token from the NRF for a specific NF Producer instance/NF Producer service instance. The request shall include the NF Instance Id(s) of the requested NF Producer, the expected NF service name and NF Instance Id of the NF service consumer.

The NRF may optionally authorize the NF service consumer to use the requested NF Producer instance/NF Producer service instance, and then proceeds to generate an access token with the appropriate claims included.

The claims in the token shall include the NF Instance Id of NRF (issuer), NF Instance Id of the NF Service consumer (subject), NF Instance Id or several NF Instance Id(s) of the requested NF Service Producer (audience), expected service name(s) (scope) and expiration time (expiration).
The token shall be included in the Nnrf_AccessToken_Get response sent to the NF service consumer.

Service access request based on token verification

The following figure and procedure describes how authorization is performed during Service request of the NF service consumer.

[image: image4.emf]NF Service

Consumer

NF Service

Producer

1. NF Service request

(access token)

2. Verify integrity and

claims in the access token.

If successful, execute the

requested service

3. NF Service response

Figure 13.4.1.1-2: NF service consumer requesting service access with an access token

Pre-requisite: The NF service consumer is in possession of a valid access token before requesting service access from the NF Service producer.

1.
The NF Service consumer shall request service from the NF service producer. The NF Service Consumer shall include the access token.

The NF Service consumer and NF service producer shall authenticate each other following clause 13.3.

2.
The NF Service producer shall verify the token as follows:

 -
The NF Service producer ensures the integrity of the token by verifying the signature using NRF’s public key or checking the MAC value using the shared secret. If integrity check is successful, the NF Service producer shall verify the claims in the token as follows:

-
It checks that the identity of the issuer of the access token (NRF) in the issuer claim in the access token, matches the subject in the NRF certificate.

-
It checks that the subject claim within the access token, matches the subject in the NF consumer certificate.

NOTE: This can be done only in intra-PLMN scenarios where NF consumer and NF producer mutually authenticate each other with TLS certificates (clause 13.3.2).

-
It checks that the audience claim in the access token matches its own identity or the type of NF service producer.

-
If scope is present, it checks that the scope matches the requested service operation.

-
It checks that the access token has not expired by verifying the expiration time in the access token against the current data/time.

3.
If the verification is successful, the NF Service producer shall execute the requested service and respond back to the NF Service consumer. Otherwise it shall reply based on Oauth 2.0 error response defined in RFC6749 [43].

13.4.1.2
Service access authorization in roaming scenarios

In the roaming scenario, OAuth 2.0 roles are as follows:

a.
The visiting Network Resource Function (vNRF) shall be the OAuth 2.0 Authorization server for vPLMN and authenticates the NF service consumer.

b.
The home Network Resource Function (hNRF) shall be OAuth 2.0 Authorization server for hPLMN and generates the access token.

c.
The NF service consumer in the visiting PLMN shall be the OAuth 2.0 client.

d.
The NF service producer in the home PLMN shall be the OAuth 2.0 resource server.

OAuth 2.0 client (NF service consumer) registration with the OAuth 2.0 authorization server (NRF)

Same as in the non-roaming scenario in 13.4.1.1.

Obtaining access token independently before NF service access

The following procedure describes how the NF service consumer obtains an access token for NF service producers of a specific NF type for use in the roaming scenario.

[image: image5.emf]NF Service

Consumer

Authorization Server

(vNRF)

1.Nnrf_AccessToken_Get Request(NF Instance Id, NF

consumer type, target NF type, Home and serving PLMN

IDs..)

5. Nnrf_AccessToken_Get Response

(access_token)

Authenticate client

Registration

Authorization Server

(hNRF)

Mutually authenticate each other

Authorize client

3. Generate a

digitally signed

access token

4. Nnrf_AccessToken_Get Response

(access_token)

Figure 13.4.1.2-1: NF service consumer obtaining access token before NF service access (roaming)

Pre-requisite:

a.
The NF Service consumer (OAuth2.0 client) is registered with the NRF (Authorization Server).

b.
The NRF and NF service producer share the required credentials.

c.
The two NRFs have mutually authenticated each other.

d.
The NRF in the serving PLMN and NF service consumer have mutually authenticated each other.

1.
The NF service consumer shall invoke Nnrf_AccessToken_Get Request (NF Instance Id of the NF service consumer, expected NF service Name (s), NF Type of the expected NF Producer instance, NF type of the NF consumer, home and serving PLMN IDs) from NRF in the same PLMN.

2.
The NRF in serving PLMN shall identify the NRF in home PLMN (hNRF) based on the home PLMN ID, and request an access token from hNRF as described in clause 4.17.5 of TS 23.502 [8]. The vNRF shall forward the parameters it obtained from the NF service consumer, including NF service consumer type, to the hNRF.

3.
The hNRF may optionally authorize the NF service consumer and shall generate an access token with appropriate claims included. The hNRF shall digitally sign the generated access token based on a shared secret or private key as described in RFC 7515 [45].

The claims in the token shall include the NF Instance Id of NRF (issuer), NF Instance Id of the NF Service consumer (subject), NF type of the NF Service Producer (audience), expected services name(s) (scope) and expiration time (expiration).

4.
If the authorization is successful, the access token shall be included in Nnrf_AccessToken_Get Response message to the vNRF. Otherwise it shall reply based on Oauth 2.0 error response defined in RFC 6749 [43].

5.
The vNRF shall forward the Nnrf_AccessToken_Get Response or error message to the NF service consumer.

Editor’s Note: The service names need to be aligned with CT4 definitions in TS 29.510

Obtain access token for a specific NF Producer/NF Producer service instance

The NF service consumer shall request an access token from the NRF for a specific NF Producer instance/NF Producer service instance. The request shall include the NF Instance Id(s) of the requested NF Producer, the expected NF service name and NF Instance Id of the NF service consumer.

The NRF in the visiting PLMN shall forward the request to the NRF in the home PLMN

The NRF may optionally authorize the NF service consumer to use the requested NF Producer instance/NF Producer service instance, and shall then proceed to generate an access token with the appropriate claims included.

The claims in the token shall include the NF Instance Id of NRF (issuer), NF Instance Id of the NF Service consumer (subject), NF Instance Id or several NF Instance Id(s) of the requested NF Service Producer (audience), expected service name(s) (scope) and expiration time (expiration). The token shall be included in the Nnrf_AccessToken_Get response sent to the NRF in the visiting PLMN. The NRF in the visiting PLMN shall forward the Nnrf_AccessToken_Get response message to the NF service consumer.

Service access request based on token verification

Same as in the non-roaming scenario in 13.4.1.1.

[image: image6.emf]NF Service

Consumer

NF Service

Producer

2. Verify integrity and

claims in the access token.

If successful, execute the

requested service

cSEPP pSEPP

 1. NF Service

request

(access token)

3. NF Service

response

Figure 13.4.1.2-2: NF service consumer requesting service access with an access token in roaming case

13.5
Security capability negotiation between SEPPs

The security capability negotiation allows the SEPPs to negotiate which security mechanism to use for protecting NF service related signalling over N32. There shall be an agreed security mechanism between a pair of SEPPs before conveying NF service related signalling over N32.

When a SEPP notices that it does not have an agreed security mechanism for N32 protection with a peer SEPP or if the security capabilities of the SEPP have been updated, the SEPP shall perform security capability negotiation with the peer SEPP in order to determine, which security mechanism to use for protecting NF service related signalling over N32. Certificate based authentication shall follow the profiles given in 3GPP TS 33.310 [17], clauses 6.1.3a and 6.1.4a.

A mutually authenticated TLS connection as defined in clause 13.1 shall be used for protecting security capability negotiation over N32. The TLS connection shall provide integrity, confidentiality and replay protection.

[image: image7.emf]SEPP

SEPP

1. Registration Request

(Supported security mechanisms)

3. Registration Response

(Selected security mechanism)

2. Select security

mechanism

Figure 13.5-1 Security capability negotiation

1.
The SEPP which initiated the TLS connection shall send a Registration Request message to the responding SEPP including the initiating SEPP’s supported security mechanisms for protecting the NF service related signalling over N32 (see table 9.3.1.X-1). The security mechanisms shall be ordered in the initiating SEPP’s priority order.

2.
The responding SEPP shall compare the received security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both initiating SEPP and responding SEPP.

3.
The responding SEPP shall send a Registration Response message to initiating SEPP including selected security mechanism for protecting the NF service related signalling over N32.

Editor’s Note: The exact message names are FFS.

Table 13.5-1: NF service related signalling traffic protection mechanisms over N32

	N32 protection mechanism
	Description

	Mechanism 1
	N32 Application Layer Secuity

	Mechanism 2
	TLS

	Mechanism n
	Reserved

If the selected security mechanism is N32 Application Layer Security the SEPPs shall behave as specified in clause 13.2.

If the selected security mechanism is TLS (i.e. there are no IPX entities between the SEPPs) the SEPPs shall forward the NF service related signalling over N32 using the existing TLS connection as specified in clause 13.1.

If the selected security mechanism is based on a mechanism other than the ones specified in Table 13.5-1, the two SEPPs shall terminate the TLS connection.
*** End of Changes ***
TBD: �Conflicting with S3-183089, which builds on different baseline (15.1.0).

_1598359202.vsd
NF Service Consumer

Authorization Server
(NRF)

0. NF Service Consumer registers with the NRF.

1.Nnrf_AccessToken_Get Request
(Expected NF Service name(s) and NF type,
Consumer NF type, client id, ...)

3. Nnrf_AccessToken_Get Response
(access_token)

2. Authorize the client, generate an access token.

NF Service Consumer
Authorization Server
(vNRF)
1.Nnrf_AccessToken_Get Request(NF Instance Id, NF consumer type, target NF type, Home and serving PLMN IDs..)
5. Nnrf_AccessToken_Get Response
(access_token)
Authenticate client
Registration
Authorization Server
(hNRF)
Mutually authenticate each other
2.Nnrf_AccessToken_Get Request(NF consumer type, target NF type..)
Authorize client
3. Generate a digitally signed access token
4. Nnrf_AccessToken_Get Response
(access_token)

