Page 1

3GPP TSG-SA WG3 Meeting #92
S3-182672
Dalian (China), 20-24 Aug 2018

 revision of S3-181937
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	
	rev
	-
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Application layer security on the N32 interface

	
	

	Source to WG:
	Ericsson, Nokia, NTT Docomo, NCSC, KPN, Deutsche Telekom AG, China Mobile

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-08-23

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	This draft-CR contains the current state of SA3 work on application layer security on the N32 interface.

	
	

	Summary of change:
	Baseline for clause 13.2 (application layer security for N32 interface) is added.

	
	

	Consequences if not approved:
	No security on N32 interface.

	
	

	Clauses affected:
	3.1, 3.2, 13.2, 13.2.x1 (new), 13.2.x2 (new), ….

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** Begin of changes ****
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

5G security context: The state that is established locally at the UE and a serving network domain and represented by the "5G security context data" stored at the UE and a serving network.

NOTE 1:
The "5G security context data" consists of the 5G NAS security context, and the 5G AS security context for 3GPP access and/or the 5G AS security context for non-3GPP access.

NOTE 2:
A 5G security context has type "mapped", "full native" or "partial native". Its state can either be "current" or "non-current". A context can be of one type only and be in one state at a time. The state of a particular context type can change over time. A partial native context can be transformed into a full native. No other type transformations are possible.
5G AS security context for 3GPP access: the cryptographic keys at AS level with their identifiers, the Next Hop parameter (NH), the Next Hop Chaining Counter parameter (NCC) used for next hop access key derivation, the identifiers of the selected AS level cryptographic algorithms, and the counters used for replay protection.

NOTE 3:
NH and NCC need to be stored also at the AMF during connected mode.

5G AS security context for non-3GPP access: The key KN3IWF, the cryptographic keys, cryptographic algorithms and tunnel security association parameters used at IPsec layer for the protection of IPsec SA.
5G NAS security context: context consisting of KAMF with the associated key set identifier, the UE security capabilities, and the uplink and downlink NAS COUNT values.
NOTE 4:
The distinction between native and mapped 5G security contexts also applies to 5G NAS security contexts. The 5G NAS security context is called "full" if it additionally contains the integrity and encryption keys and the identifiers of the selected NAS integrity and encryption algorithms.

activation of security context: the process of taking a security context into use.

backward security: The property that for an entity with knowledge of Kn, it is computationally infeasible to compute any previous Kn-m (m>0) from which Kn is derived.

NOTE 5:
In the context of KgNB key derivation, backward security refers to the property that, for a gNB with knowledge of a KgNB, shared with a UE, it is computationally infeasible to compute any previous KgNB that has been used between the same UE and a previous gNB.

CM-CONNECTED state: This is as defined in TS 23.501 [2]. The term CM-CONNECTED state corresponds to the term 5GMM-CONNECTED mode used in TS 24.501 [35].

CM-IDLE state: As defined in TS 23.501 [2]. The term CM-IDLE state corresponds to the term 5GMM-IDLE mode used in TS 24.501 [35].

consumer's IPX (cIPX):

IPX provider entity with a business relationship with the cSEPP operator.

consumer's SEPP (cSEPP):
The SEPP residing in the PLMN where the service consumer NF is located.
current 5G security context: The security context which has been activated most recently. Note that a current 5G security context originating from either a mapped or native 5G security context may exist simultaneously with a native non-current 5G security context.

forward security: The property that for an entity with knowledge of Km that is used between that entity and a second entity, it is computationally infeasible to predict any future Km+n (n>0) used between a third entity and the second entity.

NOTE 6:
In the context of KgNB key derivation, forward security refers to the property that, for a gNB with knowledge of a KgNB, shared with a UE, it is computationally infeasible to predict any future KgNB that will be used between the same UE and another gNB. More specifically, n hop forward security refers to the property that a gNB is unable to compute keys that will be used between a UE and another gNB to which the UE is connected after n or more handovers (n=1 or more).

full native 5G security context: A native 5G security context for which the 5G NAS security context is full according to the above definition. A full native 5G security context is either in state "current" or state "non-current".

mapped 5G security context: An 5G security context, whose KAMF was derived from EPS keys during interworking and which is identified by mapped ngKSI.

native 5G security context: An 5G security context, whose KAMF was created by a run of primary authentication and which is identified by native ngKSI.

non-current 5G security context: A native 5G security context that is not the current one.
NOTE 7:
A non-current 5G security context may be stored along with a current 5G security context in the UE and the AMF. A non-current 5G security context does not contain 5G AS security context. A non-current 5G security context is either of type "full native" or of type "partial native".

partial native 5G security context: A partial native 5G security context consists of KAMF with the associated key set identifier, the UE security capabilities, and the uplink and downlink NAS COUNT values, which are initially set to zero before the first NAS SMC procedure for this security context.
NOTE 8:
A partial native 5G security context is created by primary authentication, for which no corresponding successful NAS SMC has been run. A partial native context is always in state "non-current".

producer's IPX (pIPX):

IPX provider entity with a business relationship with the pSEPP operator.

producer's SEPP (pSEPP):
The SEPP residing in the PLMN where the service producer NF is located.
RM-DEREGISTERED state: This is as defined in TS 23.501 [2]. The term RM-DEREGISTERED state corresponds to the term 5GMM-DEREGISTERED mode used in TS 24.501 [35].

RM-REGISTERED state: As defined in TS 23.501 [2]. The term RM-REGISTERED state corresponds to the term 5GMM-REGISTERED mode used in TS 24.501 [35].

subscription identifier de-concealing function: This service is offered by the network function UDM in the home network of the subscriber. The Subscription Identifier De-concealing Function (SIDF) is responsible for de-concealing the SUPI from the SUCI.

subscription concealed identifier: The SUbscription Concealed Identifier (SUCI) is a one-time use subscription identifier, which contains the concealed subscription identifier, e.g. MSIN.

security anchor function: The network function that serves as the anchor for security in 5G.
subscription credential(s): set of values in the USIM and the ARPF, consisting of at least the long-term key(s) and the subscription identifier SUPI, used to uniquely identify a subscription and to mutually authenticate the UE and 5G core network.
UE security capabilities: The set of identifiers corresponding to the ciphering and integrity algorithms implemented in the UE.
NOTE 9:
This includes capabilities for NG-RAN and 5G NAS, and includes capabilities for EPS, UTRAN and GERAN if these access types are supported by the UE.
UE 5G security capability: The UE security capabilities for 5G AS and NAS.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

5GC
5G Core Network
5G-AN
5G Access Network

5G-RAN
5G Radio Access Network
5G AV
5G Authentication Vector

5G HE AV
5G Home Environment Authentication Vector
AEAD
Authenticated Encryption with Associated Data
AES
Advanced Encryption Standard

AKA
Authentication and Key Agreement

AMF
Access and Mobility Management Function

AMF
Authentication Management Field

NOTE:
If necessary, the full word is spelled out to disambiguate the abbreviation.

ARPF
Authentication credential Repository and Processing Function

AUSF
Authentication Server Function

AUTN
AUthentication TokeN

AV
Authentication Vector
AV'
transformed Authentication Vector
cIPX
consumer's IPX
CP
Control Plane
cSEPP
consumer's SEPP
CTR
Counter (mode)

CU
Central Unit

DN
Data Network

DNN
Data Network Name

DU
Distributed Unit

EAP
Extensible Authentication Protocol

EMSK
Extended Master Session Key

EPS
Evolved Packet System
gNB
NR Node B
GUTI
Globally Unique Temporary UE Identity

HRES
Hash RESponse

HXRES
Hash eXpected RESponse

IKE
Internet Key Exchange
IPX
IP exchange service
KSI
Key Set Identifier

LI
Lawful Intercept

MSK
Master Session Key

N3IWF
Non-3GPP access InterWorking Function

NAI
Network Access Identifier

NAS
Non Access Stratum

NDS
Network Domain Security

NEA
Encryption Algorithm for 5G

NF
Network Function

NG
Next Generation
ng-eNB
Next Generation Evolved Node-B
ngKSI
Key Set Identifier in 5G

NIA
Integrity Algorithm for 5G

NR
New Radio

NSSAI
Network Slice Selection Assistance Information

PDN
Packet Data Network
PEI
Permanent Equipment Identifier
pIPX
producer's IPX
pSEPP
producer's SEPP
QoS
Quality of Service

RES
RESponse

SEAF
SEcurity Anchor Function

SEG
Security Gateway

SIDF
Subscription Identifier De-concealing Function

SMC
Security Mode Command

SMF
Session Management Function

SN Id
Serving Network Identifier

SUCI
Subscription Concealed Identifier

SUPI
Subscription Permanent Identifier

TLS
Transport Layer Security

UE
User Equipment

UEA
UMTS Encryption Algorithm

UDM
Unified Data Management

UIA
UMTS Integrity Algorithm

ULR
Update Location Request

UP
User Plane

UPF
User Plane Function

USIM
Universal Subscriber Identity Module

XRES
eXpected RESponse

**** Next changes ****
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.501: "System Architecture for the 5G System".

[3]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[4]
IETF RFC 4303: "IP Encapsulating Security Payload (ESP)".

[5]
3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".

[6]
IETF RFC 4301: "Security Architecture for the Internet Protocol".

[7]
3GPP TS 22.261: "Service requirements for next generation new services and markets".

[8]
3GPP TS 23.502: "Procedures for the 5G System".

[9]
3GPP TS 33.102: "3G security; Security architecture".

[10]
3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".

[11]
3GPP TS 33.402: "3GPP System Architecture Evolution (SAE); Security aspects of non-3GPP accesses".

[12]
IETF RFC 5488: " Network Mobility (NEMO) Management Information Base".

[13]
3GPP TS 24.301: " Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3".

[14]
3GPP TS 35.215: " Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2; Document 1: UEA2 and UIA2 specifications".

[15]
NIST: "Advanced Encryption Standard (AES) (FIPS PUB 197)".

[16]
NIST Special Publication 800-38A (2001): "Recommendation for Block Cipher Modes of Operation".

[17]
NIST Special Publication 800-38B (2001): "Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication".

[18]
3GPP TS 35.221: " Specification of the 3GPP Confidentiality and Integrity Algorithms EEA3 & EIA3; Document 1: EEA3 and EIA3 specifications".

[19]
3GPP TS 23.003: "Numbering, addressing and identification".

[20]
3GPP TS 22.101: "Service aspects; Service principles".

[21]
IETF RFC 4187: "Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA)".

[22]
3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".

[23]
3GPP TS 38.323: "NR; Packet Data Convergence Protocol (PDCP) specification".

[24]
3GPP TS 33.117: "Catalogue of general security assurance requirements".

[25]
IETF RFC 7296: "Internet Key Exchange Protocol Version 2 (IKEv2)"

[26]
IETF RFC 4303: "IP Encapsulating Security Payload (ESP)"

[27]
IETF RFC 3748: "Extensible Authentication Protocol (EAP)".

[28]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".

[29]
SECG SEC 1: Recommended Elliptic Curve Cryptography, Version 2.0, 2009. Available http://www.secg.org/sec1-v2.pdf
[30]
SECG SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.0, 2010. Available at http://www.secg.org/sec2-v2.pdf
[31]
3GPP TS 38.470: "NG-RAN; F1 General aspects and principles".

[32]
3GPP TS 38.472: "NG-RAN; F1 signalling transport".

[33]
3GPP TS 38.474: "NG-RAN; F1 data transport".

[34]
3GPP TS 38.413: "NG-RAN; NG Application Protocol (NGAP)"

[35]
3GPP TS 24.501: "Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3".

[36]
3GPP TS 35.217: "Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2; Document 3: Implementors' test data".

[37]
3GPP TS 35.223: "Specification of the 3GPP Confidentiality and Integrity Algorithms EEA3 & EIA3; Document 3: Implementors' test data".

[38]
IETF RFC 5216: "The EAP-TLS Authentication Protocol".

[39]
IETF RFC 4346: "The Transport Layer Security (TLS) Protocol Version 1.1".

[40]
IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".

[41]
3GPP TS 38.460: "NG-RAN; E1 general aspects and principles".

[42]
IETF RFC 4282: "The Network Access Identifier".

[43]
IETF RFC 6749: "OAuth2.0 Authorization Framework".

[44]
IETF RFC 7519: "JSON Web Token (JWT)".

[45]
IETF RFC 7515: "JSON Web Signature (JWS)".

[46]
IETF RFC 7748: "Elliptic Curves for Security".

[47]
IETF RFC 7540: " Hypertext Transfer Protocol Version 2 (HTTP/2)".

[xx]
IETF RFC 7516: "JSON Web Encryption (JWE)".
[yy]
Internet draft draft-ietf-tls-tls13: "The Transport Layer Security (TLS) Protocol Version 1.3".
**** Next changes ****
13.2
Application layer security on the N32 interface
Editor’s Note: It is FFS how each JSON IE in the message is identified during parsing, and how each of these IEs need to be protected.
 It is FFS how binary data in the message payload is identified during parsing, and how it is protected.
Details of how sensitive contents in Request-URI are identified and protected is FFS.
Details of how sensitive information in HTTP Headers is identified and protected is FFS.
Details of how the receiving SEPP verifies the message is for FFS.
It is FFS how the receiving SEPP restores the original message from the received protected message.
Negotiation and agreement on the cipher suites between the two SEPPs is FFS.
Renegotiation of cipher suites between the two SEPPs is FFS
Key management aspects that includes key distribution and key agreement aspects are FFS.

Editor's Note: Solutions in this sub-clause may apply, in particular, when there may be intermediaries modifying messages, e.g. in roaming situations.

Editor's Note: This sub-clause is to include solutions satisfying the requirements on e2e security in clause 5.6. It is ffs whether the work performed by GSMA FASG DESS on e2e security for selected DIAMETER AVPs can be somehow utilized here. It is to also take into account solutions 10.1 and 10.2 in clause 5.10.4 of TR 33.899. When the solution(s) involve a Public Key Infrastructure then details of the use of the PKI are to be provided, e.g. by reference to TS 33.310.
13.2.1
General
The internetwork interconnect allows secure communication between service-consuming and a service-providing NFs. Security is enabled by the Security Edge Protection Proxies of both networks, called cSEPP and pSEPP respectively. The SEPPs enforce network policies regarding application layer security. They also ensure integrity and confidentiality protection for those elements on the application layer that are to be protected.

There is the assumption that there are interconnect providers between cSEPP and pSEPP. The interconnect provider the cSEPP's PLMN has a business relationship with is called cIPX, while the interconnect provider the pSEPP's PLMN has a business relationship with is called pIPX. There could be further interconnect providers in between cIPX and pIPX, but they are assumed to be transparent and simply forward the communication.

pIPX and cIPX can offer services that require modifications of the messages transported over the interconnect interface. These modifications are appended to the message and reflect the desired changes.

13.2.2
Initial handshake between SEPPs

Editor’s Note: Section 13.5 currently specifies the procedure for security capability negotiation between SEPPs. It needs to be merged under the initial handshake procedure.

13.2.2.1
General

The initial handshake allows the SEPPs to mutually authenticate each other and negotiate the security mechanism to use over N32 along with associated security configuration parameters.

The two SEPPs mutually authenticate each other based on client and server certificates using TLS [40]. Certificate based authentication shall follow the profiles given in 3GPP TS 33.310 [17], clauses 6.1.3a and 6.1.4a. A secure connection is established between the two SEPPs which provides confidentiality protection, integrity protection and replay protection of all traffic exchanged between the SEPPs.
The two SEPPs perform security capability negotiation to determine the security mechanism to use for protecting NF service related signalling over the N32 interface.

If the selected N32 protection mechanism is to use Application Layer Security at the HTTP layer, the two SEPPs:

-
independently export keying material associated with the established TLS session between them, and use it as the pre-shared key for generating the shared session key required. This is based on RFC 5705 [xx] for TLS 1.2. For TLS 1.3, the exporter described in section 7.5 of [yy] is used.

-
exchange security related configuration parameters that are needed by the SEPPs to protect HTTP messages exchanged between the two Network Functions (NF) in their respective networks.

The following security related configuration parameters may be exchanged between the two SEPPs:

a. Modification protection policy – Modification protection policy, as specified in clause 13.2.3.4, indicates which IEs can be modified by an IPX provider of the sending SEPP.

b. Cipher suites for confidentiality and integrity protection when Application layer security is used to protect HTTP messages between them.

Editor’s Note: Whether supported confidentiality protection and integrity protection methods need to be negotiated is FFS.

13.2.2.2
Procedure

1. The two SEPPs mutually authenticate each other and set up a secure TLS connection between them.

2. The two SEPPs perform a security capability negotiation to agree on a security mechanism to use for protecting NF service related signalling over N32:

2a. The SEPP which initiated the TLS connection sends a Capability Negotiation Request message to the responding SEPP including the initiating SEPP’s supported security mechanisms for protecting the NF service related signalling over N32.

2b.
The responding SEPP compares the received security capabilities to its own supported security capabilities and selects, based on its local policy, a security mechanism, which is supported by both initiating SEPP and responding SEPP.
2c. The responding SEPP sends a Capability Negotiation Response message to the initiating SEPP including selected security mechanism for protecting the NF service related signalling over N32.

3. If the selected security mechanism is based on a mechanism other than the application layer security at the HTTP layer, the two SEPPs skip steps 4 to 6 and proceed to step 7.

4. The two SEPPs perform a cipher suite negotiation to agree on a cipher suite to use for protecting NF service related signalling over N32.

4a. The SEPP which initiated the TLS connection sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s supported cipher suites. The cipher suites are ordered in initiating SEPP’s priority order.

4b. The responding SEPP compares the received cipher suites to its own supported cipher suites and selects, based on its local policy, a suite, which is supported by both initiating SEPP and responding SEPP.
4c. The responding SEPP sends a Parameter Exchange Response message to the initiating SEPP including the selected cipher suite for protecting the NF service related signalling over N32.

5. The two SEPPs may perform negotiation of protection policies to use for protecting NF service related signalling over N32:

5a. The SEPP, which initiated the TLS connection, sends a Parameter Exchange Request message to the responding SEPP including the initiating SEPP’s protection policies listed in clause 13.2.3.

5b. The responding SEPP shall store the Modification protection policy information if sent by the initiating SEPP.
5c. The responding SEPP sends a Parameter Negotiation Response message to the initiating SEPP with the selected values for the parameters sent in step 5.

5d. The initiating SEPP shall store the protection policy information if sent by the responding SEPP,

6. The two SEPPs export keying material from the TLS session established between them and use it as the pre-shared key for generating the session key required for protecting HTTP messages.

7. The two SEPPs terminate the TLS session.

Editor’s Note: The exact message names are FFS.
13.2.2.3
Security capability negotiation between SEPPs
Editor's Note: 13.5 needs to be removed as well
13.2.2.4
Parameter negotiation for JOSE-based mechanism
13.2.2.5
Policy exchange
13.2.3
Protection Policies
13.2.3.1
Overview of Protection Policies
The protection policy determines which part of a certain message shall be integrity protected, which part of a certain message shall be confidentiality protected, and which part of a certain message shall be modifiable by IPX providers. For application layer protection of messages on the N32 interface, the SEPP shall apply message protection policies.

There are two protection policies, namely:

-
Data-type encryption policy that specifies which data types need to be confidentiality protected;

-
A modification policy that specifies which IEs are modifiable by intermediaries

In addition, there is a mapping between the data-types in the data-type encryption policy and the IEs in NF API descriptions which is given in a NF-API data-type placement mapping.

13.2.3.2
Data-type encryption policy

The SEPP shall contain an operator controlled protection policy that specifies which types of data shall be encrypted. The data-types defined at this moment are the following:

-
Data of the type 'SUPI'

-
Data of the type 'location data'

-
Data of the type 'key material'
-
Data of the type 'authorization token'
-
Data of the type 'other data requiring encryption'
Editor's Note: The details of the list of data-types are ffs.
This policy shall be on a per roaming partner basis.

The policy shall contain an identifier that identifies the policy.

13.2.3.3
NF API data-type placement mapping

Each NF API data-type placement mapping shall contain the following:

-
Which IEs contain data of the type 'IMSI' or type 'NAI'
-
Which IEs contain data of the type 'location data'

-
Which IEs contain data of the type 'key material'

-
Which IEs contain data of the type 'other data requiring encryption'
-
Which IEs contain data of the type 'authorization token'
Where the location of the IEs refers to the location of the IEs after the SEPP has rewritten the message for transmission over N32.

An NF API data-type placement mapping shall furthermore contain data that identifies the NF API, namely
-
The name of the NF

-
The version

-
An identifier
NOTE:
Larger networks can contain multiple NFs with the same API, e.g. three AMFs. The NF API policy applies to all NFs with the same API.

The NF API data-type placement mapping resides in the SEPP.

13.2.3.4
Modification policy

The modification policy shall specify which IEs can be modified by an IPX provider of the sending SEPP. The IEs refer to the IEs after the SEPP has rewritten the policy.

This policy shall be specific per roaming partner and per IPX provider that is used for the specific roaming partner.

This policy resides at the SEPP.

13.2.3.5
Provisioning of the policies in the SEPP
The SEPP shall contain an interface that the operator can use to manually configure the protection policies in the SEPP.

The SEPP shall be able to store and process the following policies for outgoing messages:

-
A generic data-type encryption policy;

-
Roaming partner specific encryption policies that will take precedence over a generic data-type encryption policy if present;

-
One NF API Data-type placement mapping;

-
Multiple modification policies, to handle modifications that are specific per IPX provider and modification policies that are specific per IPX provider and roaming partner.

The SEPP shall also be able to store and process the following policies for incoming messages:

-
Roaming partner specific encryption policies;
Editor's Note: the need for roaming partner specific encryption policies for incoming messages is ffs
-
A modification policies per roaming partner that specifies which fields can be modified by which IPX providers.
13.2.4
JOSE-based protection of messages in SEPP
13.2.4.1
General

Complete messages are integrity protected between cSEPP and pSEPP. cIPX and pIPX may modify messages according to the modification policy by applying signed 'patches' to the integrity protected messages. These form an auditable chain of modification that are applied to the messages at the receiving end after verifying that the patches conform to the modification policy. Modifications are introduced by the cIPX and pIPX as signed 'patches' to the integrity protected messages, forming an auditable chain of modifications that are applied to the messages at the receiving end after verifying that the patches conform to the modification policy.
Encryption of individual JSON objects according to the data-type encryption policy takes place end to end between cSEPP and pSEPP.

The sending SEPP takes the HTTP message and encapsulates header and body into JSON elements. Reformatting only takes place for the headers, while the only changes to the body of the message are to those JSON objects that need to be encrypted.
13.2.4.2
Message reformatting in SEPP
Editor's Note: Message reformatting in SEPP may need to be revised following input from CT4.
13.2.4.2.1
N32 Message payload structure
13.2.4.2.1.1
Overall message structure
A HTTP message received from an internal Network Function is reformatted into a JSON object called N32 Message payload, consisting of the following parts:

a. The authenticatedBlock containing complete set of information that is integrity protected. It contains the following:

-
clearTextBlock – contains the complete original HTTP message.

-
encryptedBlock - containing all the attribute values requiring encryption.

-
metadata – contains SEPP generated information such as Request-Id, nexthop Id etc.
b. The modificationsBlock (modifiable integrity-protected) containing attribute values that require modifiable integrity protection
The N32 message payload is represented using the JSON syntax as follows and is transmitted on the N32 interface in the payload body of a SEPP to SEPP HTTP message.

[image: image1.emf]{

“authenticatedBlock” : {

“clearTextBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}

},

“HTTP_Headers” : {

“Hdr1”: {},

“Hdr2”:{“encBlockIdx”: 0}

},

“Payload” : {

“IE1” :{},

“IE2” :{“encBlockIdx”: 1},

“IE3” :{},

“IE4” :{}

}

},

“encryptedBlock” : [

Hdr2,

IE2

],

“metaData” : {

“Request_Id” : {},

“NextHop_Id” : {}

}

}

“modificationsBlock” : {

“Mod_chain”:[]

}

}

Figure 13.2.4.2.1-1 JSON representation of a reformatted HTTP message (i.e. N32 message payload)
Editor's Note: It is FFS whether the reference from the cleartextblock JSON object to the encryptedBlock is secure, or whether a different way of linking these is required.
13.2.4.2.1.2
authenticatedBlock
The authenticatedBlock contains the complete original HTTP message (including HTTP Request/Response line, HTTP headers and HTTP Payload) which is re-formatted into this block. This block represents information that is integrity protected. The block shall be represented as a single JSON structure consisting of the following JSON objects:
1) clearTextBlock – This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a.1)
Request_Line - containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request OR

1.a.2)
Response_Line - containing an attribute for each of the HTTP version, the status code and the status message.
1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as key and the header value as value. The path shall be put into an array, with one element per part of the path (i.e. per "directory") to enable individual encryption of the SUPI in the request line.

1.c) Payload – the JSON object that includes the payload body of the request. Each attribute or IE in the payload shall form a single entry in the Payload JSON object.
NOTE: The order and contents of the original message are unchanged as they are copied into the Payload JSON object by SEPP.
2) encryptedBlock – cf clause 13.2.6.2.1.3. If there is any attribute value that requires encryption, it shall be moved into the encryptedBlock JSON object, and the original value in the clearTextBlock is replaced by the index in the form {"encBlockIdx": <num>} where "num" is the index of the corresponding entry in the encryptedBlock array.
3) metaData – contains additional information for replay protection (Request_Id), Next Hop Identity (if available) etc.

13.2.4.2.1.3
encryptedBlock

The encryptedBlock is a JSON array that contains all the attribute values that require encryption. Attribute values can come from any part of the original HTTP message - request/response line, headers and payloads.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value.

There is an association that connects each attribute in the encryptedBlock with the original attribute in the original HTTP message (see clause 13.2.6.2.1.1). This is needed to reassemble the original message at the receiving SEPP. The association is the position of the attribute in this block.
13.2.4.2.1.4
modificationsBlock

The modificationsBlock contains modifications that require integrity protection. A JSON array is created in the modificationsBlock to represent modifications. The first entry in the array is created by the cSEPP. Subsequent entries in the array are for modifications by intermediaries.
Each entry in the array contains a JSON object representing the desired modifications by the intermediaries. The JSON object contains the following:

a)
Operations - This is a JSON element with the syntax and semantic to capture the delta based on RFC 6902 (JSON Patch). If no patch is required, the operations element is empty.
b)
Identity - identity of the entity performing the modification.
c)
Next Hop Identity - which when present shall be the identity of the next hop (intermediary).

The first entry in the array, called originalObject, represents the original message in the clearTextBlock (i.e., no original is stored in the array as first entry and operations JSON element is empty). Subsequent entries, called patchRequests, contain the forward delta that only records the modifications made by the intermediary, in the Operations field.

Each entry is signed by the modifying entity using JWS[x].
13.2.4.2.2
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image2.emf]cSEPPpSEPPpIPX

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX

modifications to miPBlock

in the message

5. Protected HTTP

Request

w/IPX modification

6. Append pIPX

modifications to miPBlock

in the message

7. Protected HTTP

Request

w/IPX modifications

8. Verify integrity of ipBlock.

Decrypt encBlock.

Verify IPX updates in

mipBlock and apply them.

Reassemble the HTTP

Request message.

9. Modified HTTP

Request

10. HTTP Response

11. Message rewriting and

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX

modifications to miPBlock

in the message

14. Protected HTTP

Response

w/IPX modification

15. Append cIPX

modifications to miPBlock

in the message

16. Protected HTTP

Response

w/IPX modifications

18. Modified HTTP

Response

17. Verify message.

Reassemble the HTTP response.

Figure 13.2.4.2.2-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin rewriting the HTTP Request message.

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextBlock containing the following child JSON objects:

-
Request_Line

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption, the attribute is copied into a encryptedBlock JSON object and
the attribute’s value in the clearTextBlock is replaced by the index of attribute value in the in the encryptedBlock.

A metadata block is created that contains a new Request Id generated by SEPP for this request and next hop identity (when available).

The clearTextBlock, encryptedBlock and metadata is encapsulated into the authenticatedBlock, which represents the complete set of information that needs to be integrity protected.

The cSEPP protects authenticatedBlock as per clause 13.2.6.3. This results in a single JWE or JWS object representing protected ipBlock.

b. Generating modifiable integrity block for attributes that may be modified by the intermediaries

If there are attribute(s) that require modifiable integrity protection, an array (Mod_chain) is created in a top level modificationsBlock JSON object to store modifications by the intermediaries.

The cSEPP creates a new originalObject JSON object. Since there is nothing modified by the cSEPP, the
operations field is empty. The cSEPP shall include its own identity in the originalObject JSON object.

Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the originalObject. This authorizes the first intermediary to perform modifications.

Editor’s Note: Only authorized intermediaries are allowed to perform modifications. Authorization mechanism is FFS

The cSEPP shall integrity protect the complete originalObject using JWS and insert it as the first entry of the Mod_chain array.

c. Additional binary payloads in multipart messages from NF are represented as separate root-level binaryPayload object

d. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS object representing protected authenticatedBlock (part a), miodificationsBlock array containing JWS protected originalObject (part b), and binaryPayload (part c) are included as payload in a new HTTP message.
3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary (visited network's IPX provider).

4.
The first intermediary (e.g. visited network's IPX provider) creates a new patchRequest JSON object. The operations JSON element contains its modifications as per RFC 6902[y]. The intermediary includes its own identity in the Identity field of the patchRequest element.

The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array of the modificationsBlock.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary determines further modifications required are captured in a new patchRequest object. Further processing is like in step 4. The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It checks the integrity of the authenticatedBlock.
-
If successfully verified, the pEPP decrypts the encryptedBlock.
-

The pSEPP updates the clearTextBlock with the values from the decrypted encBlock by replacing the references to the encryptedBlock, which are stored in the clearTextBlock, by the referenced decrypted values from the encryptedBlock.
-
It then verifies IPX provider updates of the attributes in the modificationsBlock. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextBlock in order.
The pSEPP then re-assembles the full HTTP Request or HTTP Response from the contents of the clearTextBlock.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

13.2.4.3
Message protection using JOSE
Editor’s Note: The block names (encryptedBlock, clearTextBlock, patchRequest, modificationsBlock) used to refer to different parts of the reformatted HTTP message must be aligned with CT4 definitions.
13.2.4.3.1
Protecting a reformatted HTTP message with JSON Web Encryption (JWE)

Protection of reformatted HTTP messages between SEPPs shall use JSON Web Encryption (JWE) as specified in IETF RFC 7516 [xx]. All encryption methods supported by JWE are AEAD methods that encrypt and integrity protect in one single operation, and additionally can integrity protect additional data.

The encryptedBlock and clearTextBlock shall be input to JWE as plaintext and JWE Additional Authenticated Data (AAD) respectively. The JWE AEAD algorithm generates JWE encrypted text (ciphertext) and a JWE Authentication Tag (Message Authentication Code). The ciphertext is the output from symmetrically encrypting the plaintext, while the authentication tag is a value that verifies the integrity of both the generated ciphertext and the Additional Authenticated Data.

If the clearTextBlock is not present in the rewritten HTTP message, the JWE plaintext shall be set to the string <TBD>. The JWE AEAD algorithm will generate ciphertext and an authentication tag, but the ciphertext will not contain meaningful information.

The Flattened JWE JSON Serialization syntax shall be used to represent JWE as a JSON object.

The session key shared between the two SEPPs, as specified in clause 13.2.2.4
, shall be used as the Content Encryption Key (CEK) value to the algorithm indicated in the Encryption algorithm ("enc") parameter in
the JOSE header. The algorithm ("alg") parameter in the JOSE header denoting the key exchange method shall be set to "dir", i.e. "Direct use of a shared symmetric key as the CEK".
Editor's Note: how session key is derived from the exported key is FFS.
The 3GPP profile for supported cipher suites in the "enc" parameter is described in <TBD>.
If AES GCM is used for AEAD the security considerations in 8.4 of [xx] shall be taken into account. In particular, the same key shall not be used more than 232 times and an IV value shall not be used more than once with the same key.
13.2.4.3.2
Protecting modified attributes in the reformatted HTTP message with JSON Web Signature (JWS)
Protection of IPX provider modified attributes shall use JSON Web Signature (JWS) as specified in IETF RFC 7515 [45]. The mechanism described in this clause uses signatures, i.e. asymmetric methods, with private/public key pairs.

When an IPX node modifies one or more attributes of the original HTTP message and creates a patchRequest to record its modifications, it shall use JWS to integrity protect the patchRequest and append the resulting JWS in the modificationsBlock of the N32 Message structure.

The private key of the IPX provider, as specified in clause <TBD> shall be used as input to JWS for generating the signature representing the contents of the patchRequest.
The "alg" parameter in the JOSE header indicates the chosen signature algorithm. The 3GPP profile for supported algorithms is described in 13.2.4.5.
13.2.4.4
Message modifications in IPX
Editor's Note: Message modifications in IPX may need to be revised following input from CT4.
Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.
The first intermediary shall parse the encapsulated request (i.e. the cleartext block) and determine which changes are required. The first intermediary creates a JSON object to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [xx] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is empty.
The first intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards the combined message to the second intermediary.
The first intermediary modifier metadata consists of the first intermediary's identity, and a JWS signature over the combined message, including the appended JSON object.
The second intermediary parses the encapsulated request, applies the modifications described in the JSON patch appended by the first intermediary and determines further modifications required for obtaining the desired request. These modifications are recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. The second intermediary appends this JSON object, together with modifier metadata, to the JSON message and then forwards it to the receiving SEPP.

The second intermediary metadata consists of the second intermediary's identity, and a JWS signature over the complete message, including the appended JSON object.
The receiving SEPP shall check the integrity and authenticity of the encapsulated request (i.e. the cleartext block) and the appended modifications by verifying the MAC of the SEPP to SEPP message (i.e. authenticated data block) and the signatures of the intermediaries. The receiving SEPP also checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP shall decrypt and decapsulate the encapsulated request, apply the patches in the JSON patches in order, perform plausibility checks, and create a new HTTP request according to the "patched" encapsulatedRequest.
13.2.4.5
JOSE profile
Editor's Note: More suitable place to the JOSE profile could be TS 33.310 or an annex.
13.2.4.5.1
JWE profile

SEPPs shall support JWE as defined in RFC 7516 [xx] with the following algorithms.

"enc" parameter A128GCM (AES GCM with a 128-bit key) shall be supported. "enc" parameter A256GCM (AES GCM using 256-bit key) should be supported.

"alg" parameter "dir" (Direct use of a shared symmetric key as the CEK) shall be supported.

13.2.4.5.2
JWS profile

SEPPs shall support JWS as defined in RFC 7515 [45] with the following algorithms. If a cIPX or pIPX performs modifications then it shall also support JWS.

"alg" parameter ES256 (ECDSA using P-256 and SHA-256) shall be supported. ES256 shall be used by cIPX and pIPX to sign modifications.

**** End of changes ***
�Check if this section is correct.

There are few more TBDs to resolve in this section.

�Is there a mechanism for generating a session key from the key exported from the TLS session? Or is that key used directly?

_1587819440.vsd
{
 “authenticatedBlock” : {
 “clearTextBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1587808798.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to miPBlock in the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to miPBlock in the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of ipBlock.
Decrypt encBlock.
Verify IPX updates in mipBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications to miPBlock in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications to miPBlock in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

