3GPP TSG SA WG3 (Security) Meeting #92
S3-182413
20-24 August 2018, Dalian (China)


Source:
Deutsche Telekom AG
Title:
On the need for error signalling in inter-PLMN communication
Document for:
Discussion

Agenda Item:
7.1.13.1
1
Decision/action requested

SA3 is kindly asked to endorse observations and proposals described below.
2
References

[1]
S3-182328



Agenda and notes of SA3 conference call on N32
[2]
RFC 4346




The Transport Layer Security (TLS) Protocol, Version 1.1

[3]
RFC 5246




The Transport Layer Security (TLS) Protocol, Version 1.2
[4]
draft-ietf-tls-tls13-28

The Transport Layer Security (TLS) Protocol, Version 1.3

3
Rationale

During SA3’s last conference call on N32 and its protocol details, several delegates agreed that there is a need for basic error signalling between two SEPPs. The discussion concluded with the following (informal) working agreements:
-
SA3 will define dedicated error messages/codes that are to be reported to the peer SEPP.

-
Error messages are sent to the peer SEPP if something goes wrong.

-
Actions on receiving an error is left to local SEPP implementation.
This contribution focuses on the first point, describing what minimal set of error codes would be necessary to allow for basic debugging tasks during deployment and operation of a SEPP. We do not make an assumption about how these errors are transferred back to the peer SEPP, i.e. via N32-c or N32-f.
4
Detailed proposal

N32 communication is comprised of an N32-c part for connection management and an N32-f part used to actually transport NF-to-NF messages over the interconnect. N32-c utilizes an end-to-end TLS connection between two SEPPs, N32-f the SA3-defined Application Layer Security (ALS).
N32-c events that lead to an error response
Since TLS is the basis for N32-c, it is reasonable to utilize the already defined error alerts of the respective TLS version that is used on N32-c (c.f. [2], [3], [4]).

Proposal 1: All standard error alerts defined in the RFC of the TLS version used shall be supported on N32-c.
The first thing that happens after a successful establishment of TLS is the two SEPPs agreeing on the protection mechanism to use for N32-f, i.e. ALS or TLS, if both PLMN are directly connected. It is subject to local configuration which mechanism a SEPP will choose for a given roaming partner and to be agreed by both parties beforehand. In order to allow for fast debugging in case of misconfiguration, a SEPP shall signal a protection mechanism mismatch back to its peer.
N32-c Error #1: No common protection mechanism found (TLS / ALS mismatch)

Next up is the exchange of protection policies, i.e. Data-type Encryption Policy and modification policy. Even though [1] only mentions the latter, we argue that there is merit in exchanging the Data-type Encryption Policy as well. Operators will want to make sure that their customer’s data is protected the same way, regardless whether it’s an outbound or inbound N32-f message. Without knowledge about its roaming partner’s encryption policy, an operator will be able to decrypt a N32-f message, but it will not be able to apply the same protection rules to the response. (Even if a SEPP would remember which fields were encrypted in the initial message, a response may include different IEs that may or may not be subject to encryption.) Therefore, we propose to also exchange the Data-type Encryption Policy during the intial handshake. The alternative to this approach would be the responding SEPP simply applying its own local encryption policy, which might be inferior (i.e. offer less protection) than the operator of the initiating SEPP intended. In turn, N32-f confidentiality protection would only be as good as the “weakest” policy. While operators should agree on a matching Data-type Encryption Policy out of band, the initial handshake seems well fit to perform an informational exchange and possibly throw an error, if a Data-type Encryption Policy mismatch occurred.
N32-c Error #2: Data-type Encryption Policy mismatch
Aside from a mismatch, not receiving the roaming partner’s Data-type Encryption Policy at all should also lead to an error.
N32-c Error #3: Data-type Encryption Policy missing
The Modification policy of two roaming is not expected to match. Different IPX provider may need to alter different information. However, an operator has to be in possession of its roaming peer’s modification policy in order to reliably enforce N32 integrity protection. If this policy is not received during the initial handshake, the SEPP shall throw a suitable error.
N32-c Error #4: Modification Policy missing

SA3 previously found an informal agreement that a common JOSE cipher suite shall be determined via selection mechanism, i.e. the initiating SEPP sends it’s supported cipher suites as an ordered list and the peer SEPP chooses the first cipher suite that matches one of its own supported cipher suites, notifying the initiator about its choice. If this selection mechanism fails, a SEPP shall throw an error.
N32-c Error #5: No common JOSE cipher suite found
Proposal 2: The SEPP shall support the above-mentioned errors on N32-c.

N32-f events that lead to an error response
After the initial handshake via N32-c successfully finished, N32-f messages will have to include some indication in order to link them to the right N32-f context (incl. integrity key, encryption key, etc.). If such indication of the context is not known or not provided at all, the receiving SEPP will not be able to make sense of the message and will have to throw an error.
N32-f Error #1: Unknown N32-f context
If the N32-f context could successfully be determined by the receiving SEPP, there is a possibility that one of the related cryptographic keys has expired, e.g. based on a timer or a certain number of messages. Thus, there’s a need for dedicated errors.
N32-f Error #2: N32-f encryption key expired
N32-f Error #3: N32-f integrity key expired
The receiving SEPP will check the integrity of the JWE object by validating the contained JWE tag. When this validation fails, the SEPP shall raise an error. If this error occurs, the SEPP shall immediately stop processing the current message further.
N32-f Error #4: Invalid JWE tag of original message content
When an intermediate IPX provider wants to perform modifications to a message, it appends the necessary alteration in form of a JWE object to the list of modifications. The JWE tag is then signed using its private key and added as a JWS object. When the receiving SEPP is validating this JWS object using the IPX’s public key, it shall compare the recovered JWE tag from the signature and the one contained in the JWE object in the list of mofifications. If these JWE tags do not match, the signature is invalid and the SEPP shall throw a suitable error. The error message should clearly indicate by which IPX provider in the path the failed patch was added.
N32-f Error #5: JSON patch origin authentication failed
After a successful verification of the JWS signature, a receiving SEPP will have to verify the JWE tag itself in order to ensure the integrity of the IPX provider’s modification. If this verification fails, the SEPP shall raise an error. The error message should clearly indicate by which IPX provider in the path the failed patch was added.
N32-f Error #6: Invalid JWE tag in JSON patch
If one of the (legitimate) IPX provider in the path modifies some value that was not expected to change according to the modification policy of cSEPP or pSEPP, the receiving SEPP shall throw an error. 
N32-f Error #7: Modification policy violation

If the N32-f message to be rewritten violates any of the limits defined by CT4 (e.g. maximum number of IEs, overall size, nesting depth), the SEPP shall raise an error, describing what exactly went wrong.
N32-f Error #8: Invalid message syntax

Proposal 3: The SEPP shall support the above-mentioned errors on N32-f.
