3GPP TSGSA WG3 (Security) Meeting #91
S3-181916
21-25 May 2018, La Jolla, CA (USA)
comments to S3-181715
Source:
KPN
Title:
Comments to: Incorporating Contents of the SBA Living Document into the TR
Document for:
Approval

Agenda Item:
7.2.13.2
1
Decision/action requested

SA3 is asked to agree to the proposed changes, which incorporate key issues and solutions from the living doc
into the TR skeleton.
2
References

[1]
S3-181474 Living Document: Security of Service Based Architecture of 5G phase 1
[2]
S3-181714 TR Skeleton for FS_SBA-Sec
[3]
S3-181715 Incorporating Living Doc into TR
3
Rationale

During SA3#91, the majority of companies invested in the topic agreed to capture the work that was put into the living document on SBA security in a proper TR. This document transfers the key issues and solutions of the living document’s latest version [1] to the TR skeleton presented in a companion contribution [2]. Compared to [3], this version adds the necessary clauses and cleans the proposed TR content up. The latter is necessary because the living document was never intended to be a TR and SA3 has accepted everything to be included in the living document. Note that Section 4.1 (Endorsed Working Assumptions) of the living document is not taken into account, since it is primarily comprised of SA3 endorsements and agreements on what to specify in Rel-15 and in which order to do so.
4
Detailed proposal

*** Start of 1st change ***
2
References
[1]

3GPP TR 21.905 Vocabulary for 3GPP Specifications
[2]

3GPP TS 23.501 System Architecture for the 5G System
[3]

3GPP TS 23.502 Procedures for the 5G System
[4]
JSON Object Signing and Encryption (https://datatracker.ietf.org/wg/jose/charter)
[5]
RFC 7515 – JSON Web Signature (https://tools.ietf.org/html/rfc7515)
[6]
RFC 7516 – JSON Web Encryption (https://tools.ietf.org/html/rfc7516)
[7]
RFC 7518 – JSON Web Algorithms (https://tools.ietf.org/html/rfc7518)
*** Start of 2nd change ***
5
Key issues

5.1 Key Issue #1: Authorization

5.1.1 Key issue detail

TS 23.501[2] states that “network functions within the 5GC Control Plane should only use service-based interfaces for their interactions”. Most procedures between core NFs have become service based. In SBA, a service could be accessed by any other NFs with service based interface. This introduces a risk of service abuse if its invocation is not access controlled. Therefore TS 23.501 [2] requires that “The Service authorization may entail two steps: (1) Check whether the NF Service Consumer is permitted to discover the requested NF Service Producer instance during the NF service discovery procedure. (2) Check whether the NF Service Consumer is permitted to access the requested NF Service Producer for consuming the NF service.”

Authorization in SBA is relatively complex because the service access between NFs is very frequent and services would be invoked across different network domains. To provide an effect and efficient method against service abuse, the following key issues should be taken into account:

· -
What is the granularity of authorization? Candidates include service based, NF based, NF type based.

· -
Since three authorization methods will be considered, i.e. the network edge, each NF, and NRF, the applicable scenarios of each method should be specified.

· -
Solutions and procedures of each authorization should be specified.

· -
For each authorization method, where are the authorization rules determining whether to allow service access from and stored? Does NF profile include its authorization rules?

5.1.2 Security threats

Unauthorized invocation of services by NF either inside or outside the same security domain.
Unauthorized discovery of services by NFs inside or outside the same security domain.
Leakage of data and/or compromise of subscriber’s privacy due to unauthorized invocation of a service.
5.1.3 Potential security requirements

Service discovery should be subject to access control by the PLMN hosting the service to be discovered.
Service invocation should be subject to access control by the PLMN hosting the service.

*** Start of 2nd change ***

should

*** Start of 3rd change ***

should

*** Start of 4th change ***
6
Solutions
6.1 Solution #1: Authorization of NF service access

6.1.1
Introduction
This solution addresses Key Issue #1 by proposesing authorization procedures for authorizing NF service consumer to access services provided by NF service producer.
Granularity of authorization should be on a per service basis
. In the case of authorization by NRF, prior to accessing a service defined in TS 23.502 [3], the NF service consumer should request a token from NRF. The token records and proves that NF service consumer is permitted to access the service provided by the service producer. The NF service producer should verify the token before executing the requested service. The authorization token can be reused to avoid requesting authorization for every service access.

6.1.2
Solution details
6.1.2.1
Service authorization procedure for non-roaming scenarios

[image: image3.emf]

5 . Token V erification R esponse

4 . Token V erification Request (Token)

6 . NF Service R esponse

3 . NF Service Request (Token)

1. Service Authorization Request

2 . Authorization Result (Token)

NRF

NF Ser vice Consumer

NF Service Producer

Authentication

Figure 6.1.2.1-1: Service authorization procedure for non-roaming scenario
1. NF service consumer to NRF: Service Authorization Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name). Service Authorization Request is included in Nnrf_NFDiscovery_Request [3] if the NF Service Counsumer requests service authorization along with NF service discovery request.

2. NRF to NF Service Consumer: Authorization Result (Token).

NRF checks whether the access can be permitted according to the maintained authorization information. If the service can be authorized, NRF sends the result along with a token that proves this authorization. The token should include the NF type and NF instance ID of NF service consumer, the NF type and NF instance ID of NF service producer, the NF service name that will be accessed, and a credential such as MAC (Message Authentication Code) or digital signature. If the token can be reused within a period of time, the expiration date should also be included. If Service Authorization Request is included in Nnrf_NFDiscovery_Request, NF service producer should include Authorization Result in Nnrf_NFDiscovery_Request Response [3] which will be sent to the NF Service Consumer.

3. NF service consumer to NF service producer: NF Service Request (NF type and NF instance ID of service consumer, NF service name, Token).
4. NF service producer to NRF: Token Verification Request (Token).

If NF service producer is able to verify the token, step 4 and step 5 are skipped. Otherwise, NF service producer requests NRF to verify the token through Token Verification Request.

5. NRF to NF service producer: Token Verification Response.

NRF informs NF service producer the verification result. Token Verification Request and Response could introduce much overhead, thus it is recommended to verify the token by NF service producer itself.

6. NF service producer to NF service consumer: NF Service Response.

If the token is valid and the NF service Request is consistent with the information in the token, NF service producer executes the requested service and response to NF service consumer.

Editor’s Note: Parameters of the messages and parameters in the token are FFS.

Editor’s Note: How to compute and verify the credential included in the token is FFS.

6.1.2.2
Authorization of NF service access for roaming scenario

[image: image4.wmf]

3

.

Authorization

R

esponse

2

.

Authorization

Request

4

.

NF

Serv

ice

R

esponse

1

.

NF

Service

Request

V

-

NRF

NF

Service Consumer

NF Service

Producer

H

-

NRF

NF

Discovery

Authorize based on

authorization

information

NF

authentication

NF

authentication

A

uthentication

Figure 6.1.2.2-1: Authorization of NF service access for roaming scenario
1. NF service consumer to NF service producer: NF Service Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name).
2. NF service producer to NRF in Home PLMN: Authorization Request (NF type and NF instance ID of service consumer, NF type and NF instance ID of service producer, NF service name).

3. NRF in Home PLMN to NF service producer:
NRF in Home PLMN checks whether the access can be permitted according to the maintained authorization information (static policies). If the service can be authorized, NRF in Home PLMN sends the Authorization Response to the NF service producer.
4. NF service producer to NF service consumer:
If authorized, NF service producer executes the requested service and response to NF service consumer.

Editor’s Note: The authentication mechanisms between different PLMNs is FFS.
6.1.3
Evaluation
*** Start of 5th change ***
6.2 Solution #2: Application layer protection based on JSON Object Signing and Encryption (JOSE)

6.2.1

General

This solution does not address a key issue. This solution considers the following aspects in order to achieve e2e protection of application layer information in the HTTP payload:

-
Which protocol to use to secure JSON content

-
Where to implement e2e security in the network

-
Which JSON information elements to protect and what kind of protection is required

-
Algorithms to use for protection and their negotiation between two Edge Proxy end points

-
Key management aspects including key distribution to the Edge Proxies

-
Protection mechanism that allows selective protection of the payload while allowing other unprotected payload to be modified by the intermediaries

6.2.2
Application layer protection based on JOSE

JOSE [4] provides a set of specifications to protect JSON based data structures. These include standards for

-
representation of integrity-protect JSON data based on public-key digital signatures as well as symmetric-key MACs using JSON Web Signing (JWS) [5],
-
representation of encrypted data using JSON Web Encrypton [6],

-
specifying how to encode public keys as JSON-structured objects,

-
specifying algorithms and algorithm identifiers using JSON Web Algorithm [7],

-
specifying a means to protect private and symmetric keys via encryption.

6.2.2.1
JSON based IEs that require protection (WHAT)

In this solution it is proposed that:
-
JOSE framework will be used to integrity protect all the JSON IEs in the HTTP message payload. The JSON Web Signature [5] applies integrity protection either based on digital signatures (asymmetric protection) or Message Authentication Codes (symmetric protection). The resulting datastructure is of JSON type and contains JWS Signature representing a digitally signed or MACed message payload.

-
JOSE framework will be used to confidentiality protect Authentication Vector (AVs), cryptographic keys, SUPI and Location data (e.g. Cell ID and Physical Cell ID) contained in the HTTP message. The JSON Web Encryption [6] is based on the use of Authenticated Encryption with Associated Data (AEAD) based encryption algorithms. Hence it applies both confidentiality protection and integrity protection on the Authentication Vectors.

should
6.2.2.2
Integrity and Confidentiality protection schemes (HOW)

6.2.2.2.1 Integrity protection based on JSON patch

There is a requirement for "e2e" integrity protection in conjunction with requirement for intermediaries to be able to modify the message in a verifiable way.

[image: image5.wmf]v

i

s

i

t

e

d

N

e

t

w

o

r

k

V

i

s

i

t

e

d

S

E

P

P

v

i

s

i

t

e

d

I

P

X

H

o

m

e

I

P

X

H

o

m

e

S

E

P

P

H

o

m

e

N

e

t

w

o

r

k

1

r

e

q

u

e

s

t

2

.

e

n

c

a

p

s

u

l

a

t

e

r

e

q

u

e

s

t

3

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

4

.

a

d

d

m

o

d

i

f

i

c

a

t

i

o

n

s

5

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

6

.

a

d

d

f

u

r

t

h

e

r

m

o

d

i

f

c

a

t

i

o

n

s

7

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

q

u

e

s

t

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

w

i

t

h

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

8

.

d

e

c

a

p

s

u

l

a

t

e

r

e

q

u

e

s

t

a

p

p

l

y

m

o

d

i

f

i

c

a

t

i

o

n

s

v

e

r

i

f

y

9

.

m

o

d

i

f

i

e

d

r

e

q

u

e

s

t

1

0

.

r

e

s

p

o

n

s

e

1

1

.

e

n

c

a

p

s

u

l

a

t

e

r

e

s

p

o

n

s

e

1

2

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

1

3

.

a

d

d

m

o

d

i

f

i

c

a

t

i

o

n

s

1

4

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

1

5

.

a

d

d

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

1

6

.

e

n

c

a

p

s

u

l

a

t

e

d

r

e

s

p

o

n

s

e

w

i

t

h

m

o

d

i

f

i

c

a

t

i

o

n

s

w

i

t

h

f

u

r

t

h

e

r

m

o

d

i

f

i

c

a

t

i

o

n

s

1

7

.

d

e

c

a

p

s

u

l

a

t

e

r

e

s

p

o

n

s

e

a

p

p

l

y

m

o

d

i

f

i

c

a

t

i

o

n

s

v

e

r

i

f

y

1

8

.

m

o

d

i

f

i

e

d

r

e

s

p

o

n

s

e

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

3

.

2

Figure 6.2.2.2-1: Message flow across N32 interface

1.
The vSEPP receives an HTTP request.

2.
The vSEPP should encapsulate the HTTP request into a JSON object encapsulatedRequest consisting of three JSON objects:

-
the request line should be put into an element called requestLine containing an element each for the method, the URI, and the protocol of the request received in step 1.

-
the header of the request received in step 1 should be put in into an element called httpHeaders, with one element per header of the original request.

-
the body of the request received in step 1 should be put into an element called http body.

Editor's note: how to deal with multipart messages is FFS.

The vSEPP should include its own identity and the encapsulatedRequest into a JSON object called partRequest as well to allow the hSEPP to identify the originator.

The vSEPP should integrity protect the complete partRequest using JWS.

The integrity protected partRequest should be put into an array.

3.
The vSEPP should use HTTP POST to send the encapsulated request to the first intermediary (visited network's IPX provider).

4.
The first intermediary (e.g. visited network's IPX provider) checks the integrity and authenticity of the encapsulated request. It should parse the encapsulated request and determine which changes are required. The first intermediary creates a JSON element called operations, taking the sytnax and semantic from RFC 6902, that, when applied as a JSON patch to the encapsulated request, will result in the desired request. If no patch is required, the operations element is empty.

Editor's note: error handling in case of failed integrity check is FFS.

The first intermediary creates a JSON element called partRequest that includes the intermediary's identity, and integrity protect the partRequest in a JWS.

The integrity protected partRequest is appended to the array inside the encapsulated request created in step 2.

5.
The first intermediary sends the encapsulated request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary checks the integrity and authenticity of the encapsulated request and the partRequest. It parses the encapsulated request, apply the modifications described in the partRequest and determine further modifications required to result in the desired request. These modifications are recorded as a further patch request. Further processing is like in step 4 (create a pertRequest and integrity protect).

7.
The second intermediary sends the encapsulated request to the hSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The hSEPP should check the integrity and authenticity of the encapsulated request and the partRequests. The hSEPP checks whether the modifications performed by the intermediaries were permitted by policy. The hSEPP should decapsulate the encapsulated request, verify signatures, apply the patches in the partRequests in order, perform filtering on the resulting request, and create a new HTTP request according to the "patched" encapsulatedRequest.

Editor's note: which signatures the hSEPP needs to verify is FFS

9.
The hSEPP should send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps should be analogous to steps 1.-9., but treating the HTTP response like the HTTP request.

Below is an example to illustrate the elements in the JSON:

partRequest created by vSEPP

{

"partRequest": {
 "previousSignature": "",
 "originatorIdentity": "some MNO's SEPP",

 "encapsulatedRequest": {

 "requestLine": {

 "method": "POST",

 "URI": "APIroot/nausf_auth/v1/ue_authentications",

 "protocol": "HTTP/2"

 },

 "httpHeader": {

 "Accept: application/json",
 "Content-Type: application/json",

 "host: ": "hplmn.f.q.dn",

 "content-length: ": 100
 },

 "body": {
 "UE-id": "maguro_suci",
 "Serving network name": "some_VPLMN",
 "access_type": "5G" }
 },

 "nextHopIdentity": "next intermediaries name"

 }

}
partRequest created by Intermediary

{

 "partRequest": {

 "previous": "<signature of previous request entry in requesthistory array>",

 "next": "<expected next originator>",

 "originator": "intermediary name",

 "operations": [

 {

 "op": "replace",

 "path": "/HTTP-headers/Host",

 "value": "HPLMN2.com"

 },

 {

 "op": "replace",

 "path": "/HTTP-headers/Content-Length",

 "value": "131"

 },

 {

 "op": "add",

 "path": "/HTTP-body/new_element",

 "value": "value1"

 }

]

 }

}

The complete request with change history as will arrive at the hSEPP

{

 "requestHistory": [

 {

 "integrityProtectedPartRequest": "protectedHeader.protectedPayloadIsPartRequestFromVSEPP.signature"

 },

 {

 "integrityProtectedPartRequests": "protectedHeader.protectedPayloadIsPartRequestFromFirstIntermediary.signature"

 },

 {

 "integrityProtectedPartRequests": "protectedHeader.protectedPayloadIsPartRequestFromFirstIntermediary.signature"

 }

]

}

6.2.2.2.2 Authorization of modifications based on JSON patch

The receiving SEPP requires a policy S which elements may be changed by the first IPX provider and a policy R which elements may be changed by the second IPX provider.

The sending SEPP should inform the receiving SEPP of policy S either out of band or by including the policy (or link thereto) in the message itself. The receiving SEPP should apply the policy that policies should not be modified by intermediate IPX providers. Policy R should be local to the receiving SEPP.

Each policy should consist of a list of paths with the allowed operations. Below is an example:

 "allowed-operations": [

 {

 "op": "replace",

 "path": "/HTTP-headers/Host"
 },

 {

 "op": "replace",

 "path": "/HTTP-headers/Content-Length"
 },

 {

 "op": "add",

 "path": "/HTTP-body/new_element"
 }

]
The receiving SEPP should verify the modifications proposed by the first IPX in the incoming message against policy S. If a policy violation occurred, the receiving SEPP should inform the sending SEPP of the policy violation in an error message with the appropriate HTTP error code and enough information for the sending SEPP to pinpoint the policy violation. The receiving SEPP should discard the incoming message. The SEPP sending the original message (i.e. the one receiving the error message) should apply the policy that policy violation messages should not be modified by intermediate IPX providers.

The receiving SEPP should verify the modifications proposed by the second IPX in the incoming message against policy R. If a policy violation occurred, the receiving SEPP should inform the second IPX provider out of band. The receiving SEPP should also inform the sending SEPP of the fact that a policy violation occurred in an error message with the appropriate HTTP error code, and discard the incoming message. The SEPP sending the original message (i.e. receiving the error message) should apply the policy that policy violation messages should not be modified by intermediate IPX providers.

Editor's Note: what the sending SEPP will do when receiving an error code is FFS.

6.2.2.2.3 Authentication of intermediaries

Each intermediary should have its own certificate infrastructure. The sending SEPP should include the root CA of the first IPX intermediary in its policy. The sending SEPP should sign its policy.
6.2.2.2.4 Rewriting of HTTP message into JSON-object
The solution "Integrity protection based on JSON patch" described in clause 6.2.2.2.1 also contains a solution for rewriting the HTTP message into a JSON object. Once the HTTP message has been rewritten in this way, it becomes more straight-forward to apply JOSE protection to selected elements of the message. Hence the rewriting process is of importance even for a solution without standardized modifications of intermediaries.

It thus seems reasonable to consider the following steps as a separate solution:

Rewriting of HTTP-message into JSON-object:

The vSEPP should encapsulate the HTTP request into a JSON object encapsulatedRequest consisting of three JSON objects:

-
the request line should be put into an element called requestLine containing an element each for the method, the URI, and the protocol of the request received in step 1.

-
the header of the request received in step 1 should be put in into an element called httpHeaders, with one element per header of the original request.

-
the body of the request received in step 1 should be put into an element called http body.

Editor's Note: It is for further study, whether including the identity of the vSEPP in the JSON-object is necessary.
6.2.2.3
Key management aspects

Editors’ Note: This clause should include the following aspects - whether Confidentiality protection and Integrity protection is based on Asymmetric encryption or Symmetric encryption, how to establish the required keys for Integrity and Confidentiality protection.

6.2.3
Evaluation
This solution does not address a key issue.
*** Start of 6th change ***
6.3 Solution #3:
NF service registration process

6.3.1
Introduction

This solution does not address a key issue. This solution addresses service request procedures.
6.3.2
Solution Details
During initial provisioning and configuration of NF, NRF is configured with NF’s public key and other information. And NF is configured with public key of NRF and other information.

[image: image6.emf]NF Service Consumer NRF

1. Registration Request((NF type of the target NF, NF ID, NF services), Nonce)Sign-PrivKey-NF

2. Registration Response(Result, Nonce, NF Certificate)Sign-PrivKey-NRF

Figure 6.3.1-1 Authentication of NF service registration
1. 1.
NF service consumer sends Nnrf_NFManagement_NFRegister Request message to NRF, signed by NF’s private key and encrypted using public key of NRF. Registration request includes a nonce for replay protection.

2. 2.
NRF sends Registration response signed by NRF private key. Registration response includes NF certificate and other parameters.

3. 3.
Upon receipt if registration response, NF service consumer checks the integrity the Nnrf_NFRegister_Response by using public key of NRF decrypts the payload by NF Service consumer’s private key.

6.3.3
Evaluation
This solution does not address a key issue.
*** Start of 7th change ***
6.4 Solution #4: Authorization of NF service access

6.4.1
Introduction
This solution addresses key issue #1. During initial provisioning and configuration of NF, NRF is configured with NF’s public key and other information. And NF is configured with public key of NRF and other information. During service registration, NF obtains certificate from NRF for its public key according to solution #3.
Service request and response uses TLS to establish a secure session between NF Service Consumer and NF Service Producer using their corresponding certificates. Upon successful Service request and response, a secure association is established between NF service consumer and NF service producer which provides secure session between the two.

Service request and response can function within same PLMN or across PLMNs. Subsequent sections describe the detailed flow for each case.
6.4.2
Solution details
6.4.2.1
Authorization of NF service access in the same PLMN

[image: image7.emf]NF Service Consumer NRF NF Service Producer

1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]

2. a. IsAuthorized(Sign_privkey_NF_C(Client_Id))

2.c.Response_IsAuthorized(Yes/No)

2.b.NRF authorizes NF_C.

3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]

4. Check Certificate

5.a.TLS[NF_C_certificate,CertificateVerify]

5.b.TLS[ClientKeyExchange]

5.c.TLS[ClientFinished]

6. Check Certificate

7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])

8. Secure Session using Session K

Session_C_P

4.aVerifyCertificate(NF_P Certificate)

4. c. Response_VerifiyCertificate(Yes/No)

6. a. VerifyCertificate(NF_C)

6.c.Response_VerifyCertificate(Yes/No)

Figure 6.4.2.1-1 Authorization of NF service request in the same PLMN
1. The NF Consumer sends an NF Service request to NF producer. It should contain a self-signed client ID. Service request should also include a client TLS [client_hello] message for the NF Producer. The contents of TLS client_hello are defined in the TLS specification.
2. a. The NF Producer forwards the Signed Client ID as a payload to IsAuthorized message to NRF.
b. NRF verifies client ID signature. If the NF Consumer ID is successfully verified, NRF checks the stored NF profile information to determine whether the access can be permitted. If the service can be provided, NRF sends the verification result back to NF Service Producer. If verification is unsuccessful, NF Service producer does not proceed.
Editor’s Note: IsAuthorized Request and response messages and VerifyCertificate message need to be defined. Its format and parameters are FFS.

3. The NF Producer replies to the NF Consumer with TLS[server_hello], which further includes information elements such as server_hello, NF_P_Certificate, server_key_exchange, certificate_request, server_hello_done. These information elements are defined in the RFCs for the TLS.
4. Upon receiving the TLS[server_hello] message NF consumer forwards the message to its NRF through VerifyCertificate message. NRF verifies the NF Producer certificate received in TLS [server_hello].

5. Upon successful verification of NF producer certificate, NF Consumer replies with TLS [client key exchange], which further contains information element such as client_certificate (NF_C_Certificate), client_key_exchange, client_certificate_verify, change_cipher_spec, client_finished, etc.

6. After receiving the TLS [client_certificate] message NF consumer forwards the message to its NRF through VerifyCertificate message. NRF verifies the NF Consumer certificate received in TLS [client_certificate] by NRF’s public key.

7. NF producer sends Nrf_Nf_Service Response with TLS [Server_finished] with change_cipher_spec to the NF Consumer.

8. Session Key (KSESSION_C_P) is used to secure further communication between NF consumer and producer.
6.4.2.2
Authorization of NF service access in different PLMNs

[image: image8.emf]NF Service Consumer NRF in Home PLMN NF Service Producer

1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]

2. a. IsAuthorized(Sign_privkey_NFC(Client_Id))

2.e.Response_IsAuthorized(Yes/No)

3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]

4. Check Certificate

5.a.TLS[NF_C_certificate,CertificateVerify]

5.b.TLS[ClientKeyExchange]

5.c.TLS[ClientFinished]

6. Check Certificate

7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])

Secure Session using Session K

Session_C_P

NRF in Serving PLMN

2. b. IsAuthorized(Sign_privkey_NFC(Client_Id))

2.c. NRF Authorizes NF_C

2.d.Response_IsAuthorized(Yes/No)

IPX

4.a.VerifyCertificate(NF_P Certificate) 4.b.VeifiyCetificate(NF_P Certificate)

4.c.Response_VerifyCertificate(Yes/No)

4.d.Response_VerifyCertificate(Yes/No)

6.b.VerifyCertificate(NF_C Certificate)

6.a.VerifyCertificate(NF_C Certificate)

6.c.Response_VerifyCertificate(Yes/No) 6.d. Response_VerifyCertificate(Yes/No)

Figure 6.4.2.2-1 Authorization of NF service access across PLMNs
1. The NF Consumer sends an NF Service request to NF producer in the home PLMN. It should contain a self-signed client ID. Service request should also include a client TLS [client_hello] message for the NF Producer. The contents of TLS client_hello are defined in the TLS specification.
2. The NF Producer forwards the Signed Client ID as a payload to IsAuthorized message to NRF in home PLMN. hNRF acts proxy for NRF in serving PLMN and forwards the signed payload to it. Serving NRF verifies the Client ID signature. If the NF Consumer ID is successfully verified, NRF checks the stored NF profile information to determine whether the access can be permitted. If the service can be provided, NRF sends the verification result back to NF Service Produce through hNRF proxy. If verification is unsuccessful, NF Service producer does not proceed.
Editor’s Note: IsAuthorized Request and response messages need to be defined. Its format and parameters are FFS.

3. The NF Producer replies to the NF Consumer with TLS[server_hello], which further includes information elements such as server_hello, NF_P_Certificate, server_key_exchange, certificate_request, server_hello_done. These information elements are defined in the RFCs for the TLS.
4. NF Service producer’s certificate is sent to NRF in HPLMN for verification through the VerifyCertificate message. Serving NRF acts as a proxy and just transfer the payload to Home NRF. The NRF in HPLMN verifies the NF producer’s certificate received in TLS [server_hello].

5. NF Consumer replies with TLS [client key exchange], which further contains information element such as client_certificate (NF_C_Certificate), client_key_exchange, client_certificate_verify, change_cipher_spec, client_finished etc.

6. NF Service consumer certificate is sent to NRF in SPLMN for verification through the VerifyCertificate message. HPLMN NRF acts as a proxy and just transfer the payload to Serving NRF. The NRF in Serving PLMN verifies the NF Consumers certificate received in TLS [client_certificate].
7. NF producer sends Nrf_Nf_Service Response with TLS [Server_finished] with change_cipher_spec to the NF Consumer.
8. Session Key (KSESSION_C_P) is used to secure further communication between NF consumer and producer.

6.4.3
Evaluation

To be added.
*** Start of 8th change ***
6.5 Solution #5: Using mediation services with end-to-end encryption

6.5.1
Generic
This solution does not address a key issue. Rather it considers how end-to-end encryption between two SEPPs on transport or application layer can be combined with mediation services of the IPX provider.
The scenario that is depicted in the figure below is a scenario with two MNOs, MNO A and MNO B and two IPX providers, IPX A and IPX B. The IPX provider A provides mediation services for MNO A and IPX provider B provides mediation services for MNO B. Both MNOs have one network function (NF), which is left unnamed. This solution provides two possible implementations, one where two SEPPs communicate securely with each other via HTTPS or TLS, and one where JOSE is used for the protection of the messages between two SEPPs.

6.5.2
End-to-end encryption using HTTPS or TLS

In this version of the solution, it is assumed that the SEPPs themselves use HTTPS for providing end-to-end security. In this case, the solution works as follows:

1.
The SEPP A receives a HTTP(S) Request from NF A as usual.

2.
In case this request contains sensitive information according to clause 9.1.3.3, the SEPP A performs an action to hide these fields for the mediation service. This action is not to be standardized. Some examples are:

a.
Replacing the values of these with some other values, e.g. a hash of the value. The SEPP A stores the hash of the value and the corresponding value temporarily.

b.
Entirely removing the fields from the message and storing bot the header and the value temporarily.

c.
Encrypting the fields using some proprietary mechanism.

3.
The SEPP A invokes the Mediate service running at the IPX A by sending a MediateAndReturn Request message to the IPX provider. The MediateAndReturn Request contains the message that was received from the NF A and has its sensitive information removed or hidden according to step 2.

4.
The Mediation services performs its mediation

5.
The mediation service sends the MediateAndReturn Response message, which contains the mediated message, to the SEPP A.

6.
Upon reception, the SEPP A reinserts the sensitive information. This action depends on how the SEPP A has removed or hidden the sensitive information and can be entirely proprietary.

7.
The SEPP A then sends the mediated version of the original NF A’s request to the SEPP B over HTTPS. So the request would look like a request that came from NF A apart from the mediated fields.

8.
The SEPP B receives the request, and if mediation is deemed necessary, the SEPP B also removes or hides the sensitive fields from the message.

9.
The SEPP B then invokes the Mediate service running on IPX B by sending a MediateAndReturn Request message to IPX B.

10.
The mediation service performs its mediation.

11.
The mediation service sends the MediateAndReturn Response message, which contains the mediated message.

12.
The SEPP B re-inserts the sensitive information

13.
And finally, SEPP B sends the request to NF B.

In short, the solution relies on standard HTTP and HTTPS. In between the steps 2 and 6, the SEPP A will either have to keep state or use an encryption / decryption mechanism. In between the steps 8 and 12, the SEPP B has a similar task. In case IPX provider hosts the SEPP (e.g. for small operators), the steps 2-6 would probably be left out altogether.

[image: image9.png]MNO A

NF A

SEPP A

MNO B

1. HTTPS Request

2. Remove Sensitive fields

6. Reinsert sensitive fields

SEPP B

NF B

8. Remove Sensitive Fields

IPXA IPX B
3. HTTPS Request
4. Med. Service
5. HTTPS Response
7. HTTPS Request N
9. HTTPS Request
10. Med. Service

11. HTTPS Response

12. Reinsert sensitive fields

13. HTTPS Request

Figure 6.5.2-1 – Mediation service using HTTPS

6.5.3
End-to-end security using JOSE

In this version of the solution, it is assumed that the SEPPs themselves use HTTP request with an encrypted JOSE payload for providing end-to-end security. In this case, the solution works as follows:

1.
The SEPP A receives a HTTP(S) Request from NF A as usual.

2.
The SEPP A takes the request and wraps the whole request into a JSON format. So, the request headers go into a field called ‘HTTPRequestHeader’, a binary blob goes into a field called ‘BinaryBlob’ and the session cookie goes into a field called ‘SessionCookie’. Then, the SEPP determines whether the message contains sensitive information according to clause 9.1.3.3 and performs an action to hide these fields for the mediation service. This action is not to be standardized. Some examples are:

a.
Replacing the values of these with some other values, e.g. a hash of the value. The SEPP A stores the hash of the value and the corresponding value temporarily.

b.
Entirely removing the fields from the message and storing bot the header and the value temporarily.

c.
Encrypting the fields using some proprietary mechanism.

3.
The SEPP A invokes the Mediate service running at the IPX A by sending a MediateAndReturn Request message to the IPX provider. The MediateAndReturn Request contains the message that was received from the NF A and has its sensitive information removed or hidden according to step 2.

4.
The Mediation services performs its mediation

5.
The mediation service sends the MediateAndReturn Response message, which contains the mediated message, to the SEPP A.

6.
Upon reception, the SEPP A reinserts the sensitive information. This action depends on how the SEPP A has removed or hidden the sensitive information and can be entirely proprietary. The SEPP A encrypts the message using standard JOSE using the target SEPP’s public key.
7.
The SEPP A then sends the mediated version of the original NF A’s request to the SEPP B over HTTP.

8.
The SEPP B receives the request, decrypts the request, and if mediation is deemed necessary, the SEPP B also removes or hides the sensitive fields from the message.

9.
The SEPP B then invokes the Mediate service running on IPX B by sending a MediateAndReturn Request message to IPX B.

10.
The mediation service performs its mediation.

11.
The mediation service sends the MediateAndReturn Response message, which contains the mediated message.

12.
The SEPP B re-inserts the sensitive information

13.
And finally, SEPP B reconstructs the HTTP Request from the JSON fields and sends the HTTP Request to the NF B.

In short, the solution relies on standard HTTP and JOSE. A complicating factor is that the SEPPs will have to convert the entire HTTP Request into a JSON object, which in itself will be contained in another HTTP request. The receiving SEPP will have to do the reverse conversion. Like in the solution based on HTTPS, in between the steps 2 and 6, the SEPP A will either have to keep state or use an encryption / decryption mechanism. In between the steps 8 and 12, the SEPP B has a similar task. In case IPX provider hosts the SEPP (e.g. for small operators), the steps 2-6 would probably be left out altogether.

[image: image10.png]MNO A

NF A

MNO B

SEPP B

SEPP A IPXA IPX B
1. HTTPS Request
2. Remove Sensitive fields &
Construct JSON
3. HTTP Request
4. Med. Service

5. HTTP Response

6. Reinsert sensitive fields

7. HTTP Request

>

NF B

8. Remove Sensitive Fields

9. HTTPS Request

10. Med. Service

11. HTTPS Response

12. Reinsert sensitive fields &
Reconstruct HTTP Req.

13. HTTPS Request

Figure 6.5.3-1 – Mediation service using JOSE end-to-end encryption

6.5.4
Migration paths after accepting this solution

One possible drawback of the solution is that it will ‘stick’ even past its due date. The solution provides therefore proposes to name the mediation service in 3GPP specs. By standardizing a name, it becomes possible to migrate to a newer service by using a service under the newer name and migration remains under control of 3GPP. Investments in existing services and SEPPs will not be affected and IPX providers can distinguish themselves by operating the newer service.
6.5.5
Possible deployments

In this solution, it is always assumed that the SEPP is located in the MNO domain and the mediation service is located in the IPX domain. As a drawback, there is an additional message exchange between the SEPP in the MNO domain and the mediation service in the IPX domain. There are two possible deployments that alleviate this problem:

-
Colocation of the SEPP in the IPX domain: This is a likely deployment scenario for smaller operators, but should not be the standard preferred option.

-
Colocation of the mediation service in the MNO domain: In this deployment, the mediation service is run as a service on premise for the MNO. This is a deployment scenario for larger operators, but will depend on the willingness of IPX providers to run their service offsite.

6.5.6
Evaluation

This solution does not address a key issue. This solution has a number of drawbacks:

-
It introduces additional messages (in total 4 if mediation is used twice);

-
The SEPP needs to either keep state for removing / reinserting the sensitive fields;

-
TLS handshake for HTTP request will take time and messages;

-
MNO needs to operate both a connection to IPX Mediation Service and a 'direct' connection to MNO peers (both can be over the same IPX network, but doesn’t have to go there).

On the other hand:

-
It mostly reuses standard HTTP, etc. making it relatively easy to implement;

-
Works with end-to-end security, also if different from what is presented here;

-
Offers a migration path;

-
Does not expose the sensitive information to the IPX provider, while making mediation services possible;

-
Can be specified within the timeframe available;

-
Allows IPX providers to continue to offer their services, even if end-to-end security is used.
*** Start of 9th change ***

6.6 Solution #6: Policies for protection on the N32 interface
6.6.1
Introduction

This solution does not address a key issue. Rather it presents a solution to deal with protection policies in the NF and the SEPP.

6.6.2
Solution details
Editor’s Note: This section has multiple options for provisioning of protection policy in the SEPP. Formatting of this clause is needed to list out the options in a readable way.
A message protection policy determines which part of a certain message should be integrity protected, which part of a certain message should be confidentiality protected, and which part of a certain message should be modifyable by IPX providers. For application layer protection of messages on the N32 interface, the SEPP should apply message protection policies.

Editor's Note: The specification of the protection policy is in scope of CT4. SA3 requires that the granularity is at service level or more fine-grained. Whether 'per subscription' is relevant, is to be discussed between SA3 and CT4. Other details are for CT4 to decide.
If the SEPP neither has nor obtains a policy applicable for a specific message, the SEPP should apply a default policy.

Editor's Note: Which IEs are protected according to the default policy is for further study.

For the protection of a specific message, an NF may include a message protection policy applicable for that specific message into the message.

The SEPP should retrieve a message protection policy from the NRF, if operator configuration requires, e.g. when the SEPP has no message protection policy available for a message to be sent on N32.

Editor's Note: It is for further study whether the procedure is a service offered by the NRF.
The SEPP should also support local configuration of message protection policy, e.g., by OA&M system. Configuration may occur during initial provisioning of SEPP or through dynamic updates any time the policy needs an update e.g., due to network configuration change.
The SEPP should send message protection policy error messages to NFs or the NRF if operator configuration requires, e.g for the case that the SEPP has no policy applicable for a specific message.

It is up to operator configuration how the SEPP behaves if more than one policy applicable for a specific message are available to the SEPP.
6.6.3
Evaluation

This solution does not address a key issue.
*** Start of 10th change ***

6.7 Solution #7: Signaling based provisioning of message protection policy in partner SEPPs
6.6.1
Introduction

This solution does not address a key issue.

This solution provides a mechanism to negotiate a protection policy between two SEPPs using a separate signalling procedure between two SEPPs. The solution therefore depends on the acceptance of solution #6.

6.6.2
Solution details
The signaling based provisioning and update of the message protection policy in a roaming partner SEPP allow the two SEPPs to share each other network’s protection policy information.

This scheme is useful in scenarios where a local SEPP obtains its message protection policy information through an out of band mechanism such as via the OA&M interface or from a central repository, and not via in-band scheme such as for e.g. embedded in HTTP messages from Network functions themselves.

When the local SEPP in a network gets its initial copy of the message protection policy or if there is an update in the network that resulted in an update to its copy of the message protection policy the local SEPP initiates a handshake with each of its remote partner SEPPs in different networks. It provides its version of the protection policy to each of them. In the response, the SEPPs in the remote network may decide to provide the latest version of its message protection policy.

A mutually authenticated TLS connection should be used for protecting SEPP to SEPP signaling messages over N32. TLS is e2e between two SEPPs with no intermediaries in between.
In the following illustration, Registration Request message flow from clause 13.5 in TS 33.501 is reused.

[image: image11.emf]SEPP

A

SEPP

B

3. Registration Response

[Protection policy for network B]

2. Store

protection policy

information for

network A

1. Registration Request

[Protection policy for network A]

4. Store

protection policy

information for

network B

Figure 6.7-1- Signaling based provisioning of message protection policy in partner SEPPs

1.
The SEPP which initiated the TLS connection sends a Registration Request message to the responding SEPP including the its message protection policy for protecting the NF service messages belonging to its network.

2.
The responding SEPP stores the received message protection policy for network A.

3.
The responding SEPP sends a Registration Response message to initiating SEPP including its message protection selected security mechanism for protecting the NF service messages belonging to its network.

4.
The initiating SEPP stores the message protection policy for network B.
6.6.3
Evaluation
This solution does not address a key issue and depends on solution #6.
*** Start of 11th change ***

6.8. Solution #8: Inter PLMN routing and TLS: Solution Options
6.8.1
Introduction

This solution does not address a key issue. Rather this solution presents three ways of using TLS for Inter PLMN routing.
6.8.2 Bump in the TLS

In this solution option, TLS seems to be end-to-end from an NF point of view, but is forced to be terminated in the SEPPs instead. This is made possible by providing the SEPPs with certificates representing the remote PLMN, signed by their own CA. This either requires a lot of pre-provisioned certificates, certificate creation on the fly, multilevel wild card certificates or the certificates would have to include the actual IP of SEPP.

Pros: No changes to current specifications.
Cons: Unorthodox solution, should work technically but may introduce implementation issues. The solution needs to be repeated for possible SEPP-IPX, IPX-IPX TLS usage.
6.8.3 TLS tunnel or VPN from NF to SEPP

In this solution, the inter-PLMN service request would be in http plain text but sent to the SEPP over TLS (stunnel etc.).
Alternatively, the transport layer protection does not need to be a TLS tunnel but could be any “VPN” connection that can be authenticated and that provides sufficient security.

Pros: Solves TLS issues in SEPP, same approach could be used between PLMN and IPX.

Cons: Adds requirements for NFs as a separate setup for the NF-SEPP tunnel is needed.
6.8.4 Using local SEPP FQDN in request URI

During service discovery, the NRF could return the local SEPP FQDN. Alternatively, the service consumer NF could determine that the target service is in the other PLMN and could send request directly to local SEPP.
URI would point to next-hop and hence TLS could be terminated in an ordinary way. The actual target NF and target PLMN could be carried in the header/body.
This option also provides a possible optimization as discovery of specific hPLMN NF instances may not be needed in vPLMN.

Pros: Solves TLS termination issues and enables independent authentication and authorization decisions within:

· -
vPLMN

· -
hPLMN

· -
Between SEPPs

Cons: Would increase state in SEPPs and requires changes to current SA2 and CT4 specifications.
6.8.5
Evaluation

This solution does not address a key issue. This solution presents three possible ways of using TLS with Inter-PLMN routing.

The pros and cons for each solution are presented in the respective solution clauses.
*** Start of 12th change ***

6.9 Solution #9: N32 message anti-spoofing within the SEPP
6.9.1
Introduction
This solution addresses key issue #1 and in particular, addresses unauthorized service invocation by spoofing. This solution addresses this requirement by proposing additional checks that the SEPP will perform when receiving a message. The solution assumes the usage of direct TLS between two SEPPs.
6.9.2
Solution Details

As the first point of contact for incoming signalling messages on N32, it is the responsibility of the Security Edge Protection Proxy to protect the PLMN and its NFs from malicious messages. Such messages might contain spoofed JSON content within the HTTP body in order to obtain unauthorized service access or obtain information about the topology of a given PLMN. Therefore, SEPP should be able to perform anti-spoofing on incoming messages, enforcing the following plausibility checks:

-
Matching of MNC and MCC: If MCC and MNC or PLMN-ID is contained in an incoming message on N32, the receiving SEPP should verify that the combination of MCC and MNC is valid.

-
Validation of the originating SEPP’s certificate: The receiving SEPP should validate the TLS certificate of the originating SEPP. This includes matching of the originating FQDN with the one that the certificate was issues for.

-
Matching of MNC and MCC and SEPP FQDN: If MCC and MNC or PLMN-ID is contained in an incoming message on N32, the receiving SEPP should verify that the originating SEPP’s FQDN matches the one expected for the contained PLMN-ID.

-
Matching of SUPI and expected SUPI-range: If the SUPI is contained in an incoming message on N32, the receiving SEPP should verify that it is either within the operators own SUPI-range or the pre-configured SUPI-range of an associated roaming partner.

In case any of the above-mentioned checks fail, the SEPP should discard the incoming message.
6.9.3
Evaluation

This solution addresses key issue 1 by adding additional checks to be performed by a SEPP that receives a message from another SEPP.

The solution assumes that TLS is used between two SEPPs.
*** Start of 13th change ***
6.10 Solution #10: Mitigation against fraudulent registration attack between SEPPs
6.10.1
Introduction

This solution does not addresses a Key Issue. Rather it addresses fraudulent registration message over N32 interface.
6.10.2
Solution Details

To mitigate this attack, the VSEPP should generate a secret based on the certificate which negotiated between SEPPs and the PLMN ID (MCC and MNC in NF ID), or the VSEPP should generate a signature by using the PLMN ID and its private key. The VSEPP should send the secret or signature together with the PLMN ID to the HSEPP through the N32 message. The HSEPP should verify the secret based on the certificate and the PLMN ID, or verify the signature based on the serving network’s public key and the PLMN ID. The HSEPP should send a response to the VSEPP through the N32 message.
6.10.3
Evaluation

This solution competes with the built-in home control of 5G AKA and EAP-AKA'. It therefore adds unnecessary complexity and it is recommended not to develop this solution further during normative work.
�This seems a solution, not a key issue detail.

�This really describes some sort of hop-by-hop solution and presents a problem with hop-by-hop solutions. I don’t think this is a key issue.

�The example here is incorrect. This is solved by home control in 5G AKA and EAP AKA’. If it’s relevant, it needs a different example where this home control is not used.

�I think this is what is meant.

�This is a Key Issue, not an Editor’s Note.

�Meaning which network function?

�This is authorization that could be solved according to this Editor’s Note in a separate point solution. No need to have an Editor’s Note here. My preference: refer to the solution (once it’s there) as an option.

�Again, it’s a fine solution, but this solution seems to be about how we deal with the messages. Policies can be developed in a different solution and referenced, if necessary.

�This can be part of another solution. Great option, no need to do this here.

_1586589177.bin

NF Service Consumer
NRF
NF Service Producer
1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]
2. a. IsAuthorized(Sign_privkey_NF_C(Client_Id))
2.c.Response_IsAuthorized(Yes/No)
2.b.NRF authorizes NF_C.
3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]
4. Check Certificate
5.a.TLS[NF_C_certificate,CertificateVerify]
5.b.TLS[ClientKeyExchange]
5.c.TLS[ClientFinished]
6. Check Certificate
7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])
8. Secure Session using Session KSession_C_P
4.aVerifyCertificate(NF_P Certificate)
4. c. Response_VerifiyCertificate(Yes/No)
6. a. VerifyCertificate(NF_C)
6.c.Response_VerifyCertificate(Yes/No)

NF Service Consumer
NRF in Home PLMN
NF Service Producer
1. Nrf_NF Service Request[TLS(ClientHello), Sign_PrivKey_NF_C(client_id)]
2. a. IsAuthorized(Sign_privkey_NFC(Client_Id))
2.e.Response_IsAuthorized(Yes/No)
3. TLS[ServerHello, NF_P_certificate,ServerKeyExchange, CertificateRequest, ServerHelloDone]
4. Check Certificate
5.a.TLS[NF_C_certificate,CertificateVerify]
5.b.TLS[ClientKeyExchange]
5.c.TLS[ClientFinished]
6. Check Certificate
7. Nrf_NF_Service REsponse(TLS [ChangeCipherSpec, ServerFinished])
Secure Session using Session KSession_C_P
NRF in Serving PLMN
2. b. IsAuthorized(Sign_privkey_NFC(Client_Id))
2.c. NRF Authorizes NF_C
2.d.Response_IsAuthorized(Yes/No)
IPX
4.a.VerifyCertificate(NF_P Certificate)
4.b.VeifiyCetificate(NF_P Certificate)
4.c.Response_VerifyCertificate(Yes/No)
4.d.Response_VerifyCertificate(Yes/No)
6.b.VerifyCertificate(NF_C Certificate)
6.a.VerifyCertificate(NF_C Certificate)
6.c.Response_VerifyCertificate(Yes/No)
6.d. Response_VerifyCertificate(Yes/No)

_1586589181.vsd
SEPPA

2. Store protection policy information for network A

4. Store protection policy information for network B

1. Registration Request
[Protection policy for network A]

3. Registration Response
[Protection policy for network B]

SEPPB

NF Service Consumer
NRF
1. Registration Request((NF type of the target NF, NF ID, NF services), Nonce)Sign-PrivKey-NF
2. Registration Response(Result, Nonce, NF Certificate)Sign-PrivKey-NRF

_1586589174.doc

Authentication

1. Service Authorization Request

2. Authorization Result (Token)

3. NF Service Request (Token)

4. Token Verification Request (Token)

5. Token Verification Response

6. NF Service Response

NF Service Producer

NF Service Consumer

NRF

_1586589176.doc

NF Discovery

2. Authorization Request

3. Authorization Response

Authorize based on authorization information

Authentication

NF authentication

NF authentication

1. NF Service Request

4. NF Service Response

NF Service Consumer

H-NRF

V-NRF

NF Service Producer

_1586589173.vsd
�

�

�

1. Authentication succeeded, UE registered to serving network A

Serving Network A

Home Network

UE

