3GPP TSG SA WG3 (Security) Meeting #89
S3-173223
27 November- 1 December 2017, Reno (US)
revision of S3-17xabc
Source:
Nokia, Deutsche Telekom AG
Title:
Application layer security based on JOSE framework
Document for:
Discussion
Agenda Item:
7.2.13 (Service based architecture)
1
Decision/action requested

SA3 is requested to take into consideration aspects discussed in this paper while designing a solution for e2e application layer security of HTTP payload
2
References

[1]
GSMA DESS e2e security guidelines
[2]
JSON Web Signature - https://tools.ietf.org/html/rfc7515
[3]
JSON Web Encryption - https://tools.ietf.org/html/rfc7516
[4]
JSON Web Algorithms - https://tools.ietf.org/html/rfc7518
[5]
JSON Web Key - https://tools.ietf.org/html/rfc7517
3

Rationale

This paper looks at the requirement for e2e core network interconnection security and recommends JOSE as the protocol for application layer protection of JSON based HTTP payload.

4
Detailed proposal

4.1 Background
4.1.1 Requirements
Clause 5.7.4 specifies the requirements for e2e core network interconnection security. To recap, selected solution at the application layer must meet the following requirements:
1. The solution shall support adding, deletion and modification of message elements by intermediate nodes except for specific message elements described in the present document.

2. The solution shall provide confidentiality and/or integrity end-to-end between source and destination network for specific message elements identified in this specification. For this requirement to be fulfilled, it shall suffice that the confidentiality and/or integrity is provided between proxy functions – cf. [2, clause 4.2.4] - in source and/or destination network that are dedicated to handling e2e Core Network Interconnection Security.

3. The destination network shall be able to determine the authenticity of the source network that sent the specific message elements protected according to the preceding bullet. For this requirement to be fulfilled, it shall suffice that a proxy function in the destination network that is dedicated to handling e2e Core Network Interconnection Security can determine the authenticity of the source network.

4. The solution should have minimal impact and additions to 3GPP-defined network elements.

5. The solution should be using standard security protocols.

6. The solution shall cover interfaces used for roaming purposes.

7. The solution should take into account considerations on performance and overhead.

8. The solution shall cover prevention of replay attacks.

9. The solution shall cover algorithm negotiation and prevention of bidding down attacks.

10. The solution should take into account operational aspects of key management.

CT3/CT4 has selected HTTP/2 as the application layer protocol with JSON as the data format for the HTTP payload. The solution to protect JSON based Information Elements (IEs) in the HTTP payload must guarantee secure transfer of the selected IEs while allowing other set of identified IEs to be modified by the intermediate nodes in the IPX network.
In the following clause (4.1.2) we look at how Javascript Object Signing and Encryption (JOSE) framework provides a set of specifications that can be used for secure transfer of JSON content in the HTTP message.
4.1.2 Introduction to Javascript Object Signing and Encryption (JOSE)
Javascript Object Signing and Encryption (JOSE) is an IETF based framework for signature and/or encryption of JSON data. The JOSE framework provides a collection of specifications to serve this purpose:

· JSON Web Signature

· JSON Web Encryption

· JSON Web Keys
4.1.2.1 JSON Web Signature (RFC 7515)
JSON Web Signature (JWS) represents content secured with digital signatures (PKI based) or Message Authentication Codes (symmetric key based) using JSON-based data structures. Cryptographic algorithms and identifiers for use in JWS are described in the separate JSON Web Algorithms (JWA) specification (RFC 7518).

Represented as: JOSE Header.encoded Payload.encoded Signature
Let’s take an example a simple payload to illustrate how JWS works:
1. Create the content to be used as the JWS Payload

Payload -> This is a test message
2. Compute the base64url encoded payload value

base64url encoded payload -> WMERICMxIR
3. Create the JSON object containing the desired set of Header parameters, which together comprise the JOSE header
JOSE Header (going to sign with ECDSA P-256 SHA-256) -> {“alg”: “ES256”}

4. Compute the base64url encoded header value

base64url encoded header -> eyJhbTci1iJFUzI1NiJ9
5. Compute the JWS signature in the manner defined for the particular algorithm specified in the “alg” header parameter in the JOSE Header. Encode it in base64url format:
base64url encoded signature over the secured input: Y3xxyWjEWiUHJKAkwWJ

6. Create the desired serialized output:
JWS Compact Serialization -> <Header>.<payload>.<signature>
eyJhbTci1iJFUzI1NiJ9.WMERICMxIR.Y3xxyWjEWiUHJKAkwWJ

NOTE 1: There are two formats to represent JWS:

a) JWS Compact Serialization format (shown above) represents JWS as a compact, URL-safe string. Useful for URI parameters.

b) JWS JSON Serialization format represents JWS as a JSON object. This representation is not optimized for compactness nor is URL-safe.

NOTE 2: JOSE Header describes the digital signature or MAC applied to the JWS Protected Header and the JWS Payload and optionally additional properties of the JWS.
The “alg” parameter in the header specifies the algorithm. The JSON Web Algorithm (JWA) RFC 7818 clause 3.1 has the complete list of algorithms that can be used to generate Digital signature or MAC value.
Here’s a programmatic example of generating JWS for a JSON Web Token (JWT) claims:

import jose
claims = {

 'iss': 'http://www.example.com',

 'exp': int(time()) + 3600,

 'sub': 42,

}

Symmetric key identified by “k”; encoded as a JSON Web Key (JWK)
jwk = {'k': “G2JKHPWWwgguHWFH”}
//Generate a MAC with the key. HMAC with SHA 256 used.
jws = jose.sign(claims, jwk, alg='HS256')

JWS(header='eyJhbGciOiAiSFMyNTYifQ',
payload='eyJpc3MiOiAiaHR0cDovL3d3dy5leGFtcGxlLmNvbSIsICJzdWIiOiA0MiwgImV4cCI6IDEzOTU2NzQ0Mjd9',
signature='WYApAiwiKd-eDClA1fg7XFrnfHzUTgrmdRQY4M19Vr8')
issue the compact serialized version to the clients. this is what will be
transported along with requests to target systems.
jwt = jose.serialize_compact(jws)

'eyJhbGciOiAiSFMyNTYifQ.eyJpc3MiOiAiaHR0cDovL3d3dy5leGFtcGxlLmNvbSIsICJzdWIiOiA0MiwgImV4cCI6IDEzOTU2NzQ0Mjd9.WYApAiwiKd-eDClA1fg7XFrnfHzUTgrmdRQY4M19Vr8'
4.1.2.2 JSON Web Encryption (RFC 7516)
JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifier for use with this specification are described in the separate JSON Web Algorithms (JWA) specification.

A JWE represents these logical values in the following format:
JOSE Header.JWE EncryptedKey.JWE InitializationVector.JWE CipherText.JWE AuthenticationTag

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the plain text.

Here’s an example of JWE is used to encrypt the message:
1. Payload/plaintext -> This is again a test

2. Header -> {“alg”:”ECDH-ES+A128KW”, “enc”:”A128CBC-HS256”, “epk”:{“kty”:”EC”, “x” : “Y9……}}
3. base64url encode header -> eyJh……UGk…J

4. Encrypted key: ECDH-ES key agreement used to AES Key wrap a 256 bit random

Base64url encoded -> DhHq778…..JE32

5. Initialization Vector: based64url encoded 128 bit IV -> wanq…..J

6. Cipher text: AES 128 CBS plaintext is url encoded -> BgEQ……PTOn8

7. Authentication tag: base64url encoded left truncated SHA-256 HMAC of encoded header, IV and eipher text -> M1c…voJD

Generated JWE is:
Header.EncrpytedKey.InitializationVector.Ciphertext.AuthenticationTag
eyJh……UGk…J. DhHq778…..JE32. wanq…..J.BgEQ……PTOn8.M1c…voJD
NOTE: JWE encryption algorithm are AEAD based (AES-GCM, for example). Thus it encrypts the plaintext and also allows Additional Authenticated Data (AAD) to be specified, and provides an integrated content integrity check over the ciphertext and Additional Authenticated Data.
The “enc” parameter in the header specifies the algorithm to be used for Content Encryption. The JSON Web Algorithm (JWA) RFC 7818 clause 5.1 has the complete list of algorithms that can be used for this purpose.

The “alg” parameter in the header specifies the algorithm to be used to encrypt or determine the Content Encryption Key (CEK). The JSON Web Algorithm (JWA) RFC 7818 clause 4.1 has the complete list of algorithms that can be used for this purpose.
4.2 Applicaton layer security with JOSE
We need to consider at a minimum the following aspects while designing a solution for e2e protection of application layer information in HTTP payload:

· Which protocol to use to secure JSON content

· Where to implement the security in the network

· Which JSON IEs to protect and what kind of protection is required (encryption and integrity protection, only integrity protection etc).
· Algorithms to use for protection and their negotiation between two Edge Proxy end points

· Key management aspects including key distribution to the Edge Proxies
· Protection mechanism that allows selective protection of the payload while allowing other unprotected payload to be modified by the intermediaries
4.2.1 Which protocol to use to secure JSON content

As described in clause 4.1.2 above, JWS and JWE specifications in JOSE framework define standardized format for signatures and encrypted content and fits naturally well for JSON based content.

It satisfies Reqs #2, #5, #8 listed in clause 4.1.1.

It’s therefore our recommendation that JOSE framework be used to protect JSON based payload in HTTP messages.

Here’s an example of a HTTP based S6a Authentication Information Request/Response with JSON payload sent without any protection:
S6a Authentication Information Request HTTP Request:
POST /operations/S6a:Authentication_Information_Request HTTP/1.1
Host: hss.operator.com
Content-Type: application/json
{
 "S6a:input" : {
 "IMSI" : "987654321098765",
 "VPLMNID" : "123456",
 "RequestedEUTRANAuthenticationInfo" : {
 "NumberOfRequestedVectors" : 1,
 "ImmediateResponsePreferred" : true
 },
 "Flags" : "Request_UE_Usage_Type"
 }
}

Response with the Authentication vectors encoded in JSON format

HTTP/1.1 200 OK
Date: Thu, 26 Jan 2017 20:56:30 GMT
Content-Type: application/json
{
 "S6a:output" : {
 “AuthenticationInfo” : {
 "EUTRANAuthenticationVectors" : [
 {
 "VectorNumber" : 1,
 "RAND" : "NzA5Mzg0MDI5ODA4NDMyMQ==",
 "XRES" : "MjA5Mzg0MDU5ODYwMDM4MQ==",
 "AUTN" : "MTIzNDU2Nzg5MDEyMzQ1Ng==",
 "KASME" : "OTg3NjU0MzIxMDY1NDMyMQ=="
 }
]
 },
 "UE_Usage_Type" : 1
 }
}

In the above example, JWE can be used to encrypt Authentication vectors in the HTTP response. Likewise for those parameters that only require integrity protection, JWS can be used to integrity protect the parameter.
4.2.2 Which IEs to protect

The determination of which IEs to protect and how, is going to be something for SA3 to own and specify as part of this activity.
There are three protection categories:

· Integrity protected modifiable

· Integrity protected unmodifiable

· Integrity protected unmodifiable and Confidentiality protected.

Each of the identified IEs must be mapped to one of the categories defined above.

Apart from those IEs identified to be in one of the above protection categories, rest of the IEs are considered to not require any protection.
4.2.3 Where to implement e2e security
The most logical place to implement JOSE based protection scheme is at the edge of the network of the Service Provider.
As illustrated in the companion papers S3-173221 and S3-173222, an Edge Proxy network element is expected to be defined in the security architecture to provide confidential and integrity protection for HTTP based signaling messages over an IPX network.

4.2.4 Algorithms used

JOSE framework provides for an extensive suite of algorithms to be used with JWS and JWE. These are specified in RFC 7518 “JSON Web Algorithms (JWA)”. The RFC also specifies recommended algorithms to be used for both the JWS and JWE.
We need to determine a mechanism to configure these algorithms in the edge proxies. Whether this is based on a static configuration on each Edge Proxy or based on negotiation is to be determined and specified as part of our solution.
4.2.5 Protection schemes
According to Req #1 in clause 4.1.1, the scheme used must be flexible enough to allow for the requirement that some of the parameters needs to be integrity protected while allowing for the intermediate nodes to modify these parameters, if required. In the companion paper S3-173220, these fall under the category “Integrity Protection required but Modifiable”.

GSMA DESS [1] describes a possible approach for generating signature per field that also allows for the intermediate nodes (IPX providers) to modify a protected field without jeopardizing the ability of the receiver (Service provider B, for example) to conclude that:

- The message is untampered between the intermediate node and Service Provider B

- No other part of the message is untampered by the intermediate node except the field that was updated

- The message is untampered between sender and the intermediate node

In other words, the message is untampered between Service Provider A and Service Provider B (except the modfied field)

The scheme must be designed in such a way that they meet Req #1 in clause 4.1.1.
4.2.6 Key management
SA3 needs to study whether Confidentiality protection and Integrity protection is based on Asymmetric encryption or Symmetric encryption.

NOTE: GSMA DESS [1] has a recommendation on which mechanism to use. That may be used as an input for our study on this aspect.

Another aspect to study is on how to establish the required keys for Integrity and Confidentiality protection (Req #10). Whether these are manually setup in the Edge Proxies, or whether a key establishment protocol is used to establish these keys needs further study.
4.3 Conclusion

SA3 is requested to take into consideration aspects discussed in this paper while designing a solution for e2e application layer security of HTTP payload.

A companion pCR S3-173224 provides introductory text to clause 7.1.3.3 in TS 33.501.
