3GPP TSG SA WG3 (Security) Meeting #86
S3-170264
6-10 February 2017, Sophia Antipolis (France)
revision of S3-17xabc
Source:
Gemalto
Title:
FS_NSA: Solution for Remote Provisioning
Document for:
Approval
Agenda Item:
8.4.12
1
Decision/action requested

This contribution proposes a solution for the security area#12 “Remote credential provisioning” to be added in clause 5.12.4 of 3GPP TR 33.899 and companion new Annex
2
References

[a]
AES128: Specification for the Advanced Encryption Standard (AES) - FIPS PUB 197

[b]

BSI Technical Guideline TR-03111: Elliptic Curve Cryptography - Version 2.0

[c]

SHA-256: Specifications for the Secure Hash Standard - FIPS PUB 180-3, 2008

3
Rationale

The solution proposes an initial attach procedure enabling a secure connection between the UE and a 3GPP network while there is no 3GPP subscription credentials within the UE. Once the secure access is established, the UE can perform remote provisioning procedure between the UE and a Remote Subscription Management Service in order to provision 3GPP subscription credentials within the UE as defined in other SDOs.
This solution corresponds to an enhanced version of the solution proposed for SA3#85 meeting in S3-161866 contribution.
The solution relies on the use of Universally Unique Identifier (UUID). A UUID is a non predictable value allowing to support the user privacy requirement. Additionally, there is no need for recycling UUID values.

4
Detailed proposal

Pseudo-CR to 3GPP TR 33.899 v0.5.0
START of 1st CHANGE

5.12.4
Solutions

5.12.4.x
Solution #5.x: Initial Attach

5.12.4.x.1
Introduction

In order to perform remote credential provisioning of MCT/IoT devics on the field while there is no 3GPP subscription credentials within the device, this solution proposes an initial attach procedure enabling secure connection between the UE and a 3GPP network. Once the secure connection is established, the UE can perform remote provisioning procedure between the UE and a Remote Subscription Management Service to provision 3GPP subscription credentials within the UE as defined in other SDOs.
5.12.4.x.2
Solution details

The solution involves the following actors:
· UE: an IoT device on the field without 3GPP subscription credentials on which 3GPP subscription credentials have to be provisioned. This UE contains a Tamper Resistant Environment (TRE).

· Service Provider (e.g OEM device maker): it can generate then tranmit UUIDUE to an IoT device that needs to perform remote credential provisioning or it can get a UUIDUE from the IoT device then transmit UUIDUE.

· Authorization Server: this entity contains a database of UUIDUEs and delivers authorization for initial attach service to the Serving Network. The Authorization Server is identified by an FQDN.
· Serving Network: the network on which the UE will attach for its first connection in order to perform remote credential provisioning.

· Remote Subcsription Management Function: This function is in charge of the provisioning of the 3GPP subscription within the UE.

In this solution, it is assumed that:

· MTC/IoT UE is on the field without being provisioned with 3GPP subscription credentials.

· It can happen that the UE obtains a UUIDUE once the UE has left the manufacturing site and is on the field.
· UUIDUE is a Universally Unique Identifier, which is a 128-bit collision free identifier.

· There is a business agreement between the SP and an Authorization Server. The SP remunerates the Authorization Server for the storage of its UUIDs in the Authorization Server database and the prepayment for using a conditional data channel of the serving network for accessing the Remote Subsription Management Function.

· There is business agreement between the Authorization Server and Serving Networks. The Serving Network can be remunerated when it receives an authorization from the Authorization Server.

· The said authorization defines the limit of the conditional use of the data channel of the Serving Network
· A secure communication channel takes place between the Serving Network and a Discover Server.

· The Serving Network and the TRE share the Certificate Issuer within a common Public Key Infrastructure. This model supports multi-CI strategy.
· The Serving Network and the Authorization Server may share the Certificate Issuer within a common Public Key Infrastructure.
· The UE and the Serving Network can support by using a suitable security scheme the following properties:

· Mutual authentication between the UE and the Serving Network

· Perfect Forward Secrecy of the data exchange between the UE (i.e. TRE) and the Serving Network

· Anti-Replay

· Confidentiality of the data exchange between the UE (i.e. TRE) and the Serving Network

· Privacy
Subsequent to an exchange of credentials between the UE and the Serving Network, a symmetric key (e.g. K), a temporary identifier (e.g. IMSI) and essential parameters are provisioned into the UE for enabling authentication and key agreement procedure related to 3GPP protocol.
Reference model and associated flow chart:

[image: image1.emf]4-Visited Network Certificate

5-TRE credentials

1 Attach Request

(UUID

UE

| SN FQDN | Slice Select Type)

7-SN credentials

0-a-UUID

UE

I SN FQDN

2-Initial Attach Service Request (UUID

UE

)

3-Initial Attach Service Response (authorization)

0-b-UUID

UE

6-UE authentication

Allocation of

connectivy

parameters

Serving

Network

UE

Authorization

Server

RSMF

SP/OEM

11-Remote Subscription Management

9-Successful Connection

8-SN authentication,

Retrival and storage of

connectivity parameters

Initial

Attach

Mutual authentication

10-Initial Attach Service Acknowledge (UUID

UE

)

Figure 5.12.4.x.1-1: initial attach for remote credential provisioning
Preliminary phase of out of scope of the specification, which is provided for better understanding.

0-a Upon request, the SP sends to the UE a UUID named UUIDUE or retrieves UUIDUE from the UE. The SP sends the FQDN of the Authorization Server that will store the UUIDUE of this UE to provide Initial Attach service during the initial attach of remote credential provisioning.

In case of generation of the UUIDUE within the UE, the UUIDUE generation can take place as described in clause 5.12.4.x.3.

0-b The SP sends the UUIDUE to the Authorization Server with which it has a business agreement with.

Initial attach procedure for remote credential provisioning:
1 At switch on, the UE selects the network to connect, best fitting is own criteria. Then, the UE sends an Attach Request containing the UUIDUE of the UE, the FQDN of the Authorization Server storing the UUIDUE for Initial Attach Service, and the Slice Select Type corresponding to Initial Attach procedure for remote credential provisioning.

2 The Serving Network selects the adequate network slice instance, if any. If the Serving Network has a business relationship with the Authorization Server, the Serving Network sends to the Authorization Server an Initial Attach Service Request containing the received UUIDUE.
3 The Authorization Server checks that the received UUIDUE is contained in his database. If yes, the Authorization Server sends Response to the Serving Network indicating that the initial procedure for remote credentials provisioning is authorized. The authorization response is signed by the Authorization Server and sent to the Serving Network.

4 The Serving Network sends its certificate to the UE.

5 Thanks to the received certificate of the Serving Network, the Tamper Resistant Environment generates its credentials (TRE credentials). The UE sends the TRE credentials to the Serving Network.

Example of cryptographic operations performed to have mutual authentication between the UE and the Serving Network are provided in Annex XX.
6 The Serving Network authenticates the UE thanks to the credentials sent in the previous step.

In case that the UUIDUE has been generated within the Tamper Resistant environment of the UE, the Serving Network can check thanks to the received TRE credentials that the UUIDUE is linked with the Tamper Resistant environment. This check prevents racing attack.

The Serving Network allocates to the UE a list of parameters enabling the UE to connect to 3GPP network, e.g. temporary IMSI, key K. The Serving Network computes an ephemeral symmetric key to be shared with the UE thanks to cryptographic information in the TRE credentials, which have been sent to the Serving Network in step 5. Example of key agreement to establish the symmetric key shared between the UE and the Serving Network is described in Annex XX. This key is used to ensure the confidentiality and integrity of the credentials sent from the Serving Network to the UE.

7 The Serving Network sends to the UE the credentials for connectivity including temporary IMSI and symmetric key K.

8 The Tamper Resistant Environment of the UE checks the authenticity of the the Serving Network and retrieves the data for the connectivity (IMSI, K, etc…). The UE can now successfully connect thanks to the retrieved data.
9 Following successful connection of the UE, the Serving Network can send a message to the Authorization Server confirming that the UE associated to the UUIDUE was successfully connected.
10 The UE can perform remote credential provisioning thanks to solution defined within other SDOs
5.12.4.x.3
Evaluation

The solution proposes an initial attach for remote credential provisioning for device without 3GPP credentials.
The solution allows to perform mutual authentication between the UE and a Serving Network thanks to an exchange of credentials enabling the UE to securely receive connectivity parameters to establish 3GPP Authentication and Key Agreement procedure. Once the UE is securely connected, the UE can perform remote credential provisioning thanks to solution defined within other SDOs.
END of 1st CHANGE

START of 2nd CHANGE

Annex XX:
Cryptography details for initial attach

XX.1
Introduction

In the scope of Security Area#12 on Remote Credential, the solution 5.12.4.x defines an initial attach procedure enabling remote credential provisioning. This Annex provides examples of cryptographic operations to apply for this solution.
XX.2

Example - 1

Example of cryptographic operations to perform initial attach procedure for remote credential provisioning as described in clause 5.12.4.x.

XX.2.1
Notations
The following notations are used in the document.

· CERT.X.ECDSA
ECDSA static certificate of X

· SK.X.ECDSA
ECDSA static private key of X for signature

· PK.X.ECDSA
ECDSA static key of X for signature

· SK.X. ECDHE
ECDHE ephemeral private key of X for key agreement

· ATK.X.ECDHE
ECDHE Authentication Token (dynamic certificate of X for key agreement)

· CERT.X.ECKA
ECKA static certificate of X for key agreement

· SK.X.ECKA
ECKA static private key of X for key agreement

· PK.X.ECKA
ECKA static public key of X for key agreement

· PK.X. ECDHE
ECDHE ephemeral public key of X for key agreement
· VERIFY(Y) [X]
Verify X with the key Y: verify the signature of X by using the public key in Y as defined in [b] for ECDSA

· SIGN(Y) [X,…]
Sign X with the key Y: generated certificate containing the signature of X (and optional parameters) by using the private key Y as defined in [b] for ECDSA signature

· DERIVE(X)[Y]
Compute a shared session key from a private key X and a certificate/authentication token Y by using an ECKA-EG or ECKA-DH as defined in [b] and a key derivation function (KDF)

· {SK,PK}= ECDHE ()
Generate an ephemeral ECDH keys pair.

· {M,H} = ENCRYPT(Y) [X]
Encrypt X with the key Y and gets the cryptogram M and the integrity check H.

· X=DECRYPT(Y,H) [M]
Decrypt M for getting X by using the key Y and check the integrity by using H
Signing operations
· CERT.X.ECDSA = SIGN(SK.Y.ECDSA)[PK.X.ECDSA,X0,X1,X2,X3…]

· ATK.X.ECDHE = SIGN(SK.Z.ECDHE)[PK.X.ECDSA,X0,X1,X2,X3…]

· ATK.X.ECDHE = SIGN(SK.W.ECDSA)[PK.X.ECDHE,X0,X1,X2,X3…]

where X0, X1, X2, X3, … are optional values to sign

Verification operations
· VERIFY(CERT.Y.ECDSA)[CERT.X.ECDSA] return a Boolean (TRUE when successful) by using the PK.Y.ECDSA in CERT.Y.ECDSA

· VERIFY(CERT.Y.ECDSA)[ATK.Z.ECDHE] return a Boolean (TRUE when successful) by using the PK.Y.ECDSA in CERT.Y.ECDSA
Derivation
· KSXYN = DERIV(SK.X.A)[B.Y.C] where KSXYN is the shared secret key(s)

· KSXYN = DERIV(SK.Y.C)[B.X.A] where KSXYN is the shared secret key(s)

Where

· A is ECKA or ECDHE

· B is CERT or ATK

· C is ECKA or ECDHE

· KSXYN = KSYXN

· KSXYN or KSYXN is a matrix of N keys: KSXY[1], KSXY[2],…, KSXY[N],

Key Derivation Function

The function DERIVE(X)[Y] allows the computation of a matrix of N shared secret key KsN from the private key X and a public key Y within a certificate or an authentication token in [b]. The procedure starts from the computation of a shared secret ECKA-EG or ECKA-DH as defined in [b] and a Key Derivation Function:

The KDF-128 is a X9.63 Key Derivation Function in [a] by using a SHA-256 in [c] and generating a set of N x 128 bit derived keys K[1] to K[N] as the Elements of the a matrix.

· KiN = KDF-128(ShS,I,SI)

Where

· ShS
: the shared secret 256 bit from the Key Agreement Algorithm ECKA-EG (using a static key and an ephemeral key) or ECKA-DH (using two ephemeral keys) as defined in [b]
· SI

: the Shared Info as SI= KEY_TYPE8BIT||"10" 8BIT ||"89" 8BIT.

· KEY_TYPE : "10" for KS1

· KEY_TYPE : "30" for Ki
Enciphering/Deciphering function
The encryption and the decryption of data is a symmetrical function based on the eGCM-128 Algorithm.

· MDST, HCHECK = eGCM-AES128 (KE, IV, EIV)[MSRC]

Where

· KE
: 128 bit Encrypting/Decrypting and integrity key

· IV
: 128 bit Initial Value Integrity check

· MSRC
:Message stream to encrypt/decrypt. The length of the message shall be a multiple of 128 bit block padded with "FF".

· EIV
: 128 bit Initial Value Encrypting Key

· MDST
: Encrypted/decrypted Message stream. The length of the encrypted message is the same than the MSRC message

· HCHECK
: 128 bit Integrity check result of the clear text (source)
All keys and initial values are derived from the key derivation function as follow:

· KE
= K[1] in KDF-128

· IV
= K[2] in KDF-128

· EIV
= K[3] in KDF-128

Consequently the generic notation as MDST, HSRC = ENCRYPT (K3)[MSRC] targeting MDST, HSRC = eGCM-128 (KE, IV, EIV)[MSRC] is MDST, HSRC = eGCM-128 (K[1], K[2], K[3])[MSRC]

We are proposing eGCM-128 has a method of encryption but CBC-AES-128 in FIPS-PUB-81 and HMAC-SHA256 in FIPS PUB 198-1 can replace it for easing the acceptance of the protocols.
· MDST = CBC-AES-128 (KE, IV)[MSRC]

· HCHECK = HMAC-SHA256 (KH)[MSRC]

Where

· KE
: 128 bit Encrypting/Decrypting and integrity key : K[1] in KDF-128
· IV
: 128 bit Initial Value Integrity check : K[2] in KDF-128
· MSRC
: Message stream to encrypt/decrypt. The length of the message shall be a multiple of 128 bit block padded with "FF".

· KH : 128 bit Initial Key : K[3] in KDF-128
· MDST
: Encrypted/decrypted Message stream. The length of the encrypted message is the same than the MSRC message

· HCHECK
: 128 bit Integrity check result of the clear text (source)

XX.2.2
Initial attach procedure details
XX.2.2.1
Long term credentials

The Tamper Resistant Environment contains the following long term credentials:

· CERT.CI.ECDSA: Issuer Root certificate,

· CERT.PN.ECDSA: certificate of the Part Number related to the reference of the TRE within the TRE maker organization signed by the Issuer Root,

· CERT.PN.ECDSA = SIGN (SK.CI.ECDSA) [PK.PN.ECDSA,…] generated certificate containing the signature as defined in [b] for ECDSA signature

· Long term public/private keys, SK.TRE.ECDSA and PK.TRE.ECDSA, created within the Tamper Resistant environment by on-board keys generation,

· CERT.TRE.ECDSA = SIGN (SK.PN.ECDSA) [PK.TRE.ECDSA,…] generated certificate containing the signature as defined in [b] for ECDSA signature

· a long term secrete key named KTRESI in case of generation of the UUIDUE within the Tamper Resistant environment

The Serving Network cntains the following long term credentials:
· CERT.CI.ECDSA: Issuer Root certificate,

· SK.SN.ECDSA : the private key of the Serving Network

· PK.SN.ECDSA : the public key of the Serving Network

· CERT.SN.ECDSA =SIGN (SK.CI.ECDSA) [PK.SN.ECDSA,…] generated certificate containing the signature as defined in [b] for ECDSA signature

XX.2.2.1
PKI model

[image: image2.emf]TRE MAKER

CERT.PN.ECDSA

SK.PN.ECDSA

TRE

CERT.TRE.ECDSA

SK.TRE.ECDSA

CERT.PN.ECDSA

CERT.CI.ECDSA

TRE MAKER

CERT.CI.ECDSA

SK.CI.ECDSA

Serving Network

CERT.SN.ECDSA

SK.SN.ECDSA

CERT.CI.ECDSA

CERT.SN.ECKA

SK.SN.ECKA

Request Certificate

PK.SN.ECDSA

PK.SN.ECKA

Answer

CERT.SN.ECDSA

CERT.CI.ECDSA

CERT.SN.ECKA

Request Certificate

PK.PN.ECDSA

Request Certificate

PK.TRE.ECDSA

Answer

CERT.TRE.ECDSA

CERT.PN.ECDSA

CERT.CI.ECDSA

Answer

CERT.PN.ECDSA

CERT.CI.ECDSA

 Figure Annex XX.2.1 - 1: PKI model
XX.2.2
Cryptographic details
Taking into account the notations, credentials and PKI models described above, this clause details the cryptographic operations to apply in steps of the initial attach procedure defined in clause 5.12.4.x..
Step 0-a
0-a Upon request, the SP sends to the UE a UUID named UUIDUE or retrieves UUIDUE from the UE. The SP sends the FQDN of the Authorization Server that will store the UUIDUE of this UE to provide Initial Attach service during the initial attach of remote credential provisioning.

· UUIDUE = AES128[KTRESI](Rand|CATV|SN), where

· Rand
: is a 32 bit random

· CATV
: is a 32 bit secret constant for checking a successful decoding of SN

· SN
: Serial Number of the Tamper Resistant Environment (max 48 bit length)

Step 5
The Tamper Resistant Environment verifies the received certificate of the Serving Network thanks to the CERT.CI.EDSA of the Certificate Issuer.

VERIFY (CERT.CI.ECDSA)[CERT.SN.ECKA] as defined in [b] for ECDSA verification where the CERT.SN.ECKA signature is verified by using PK.CI.ECDSA within CERT.CI.ECDSA.

The Tamper Resistant environment generates ephemeral ECDH key pair as defined in [b]: {SK.TRE.ECDHE, PK.TRE.ECDHE} = ECDHE() as defined in [b] for Elliptic Curve Key Pair Generation in the same ECC domain than PK.SN.ECKA
The Tamper Resistant environment computes KS13 by using CERT.SN.ECKA from the Serving Network:

· KS13 = DERIV (SK.SE.ECDHE) [CERT.SN.ECKA]

The key KS13 is used to encrypt the CERT.TRE.ECDSA

· {M1,H1} = ENCRYTP (KS13) [CERT.TRE.ECDSA]

Then, the Tamper Resistant environment generates a token named ATK.TRE.ECDHE to be sent to the Serving Network. This token contains the UUIDUE, the ISSN, and the ephemeral public key of the Tamper Resistant Element enabling the Serving Network to compute the same ephemeral key KS13
· ATK.TRE.ECDHE=SIGN(SK.TRE.ECDSA)[PK.TRE.ECDHE ,IsSN,UUIDUE] generated token containing the signature as defined in [b] for ECDSA signature

The credentials sent by the UE to the Visited Network are: ATK.TRE.ECDHE, CERT.PN.ECDSA, CERT.CI.ECDSA, M1, H1 in order to the Serving Network to verify the authenticity of the Tamper resitant environment associated to the UUIDUE.
Step 6: The Serving Network performs the following operations:

· CERT.CI.EDSA is agreed

· Verify CERT.PN.ECDSA by using CERT.CI.ECDSA

· Compute KS13 = DERIV (SK.SN.ECKA, PK.TRE.ECDHE]

· Decrypt and check integrity of CERT.TRE.ECDSA = DECRYPT (KS13, H1)[M1]

· Verify CERT.TRE.ECDSA by using CERT.PN.ECDSA

· Verify ATK.TRE.ECDHE by using CERT.TRE.ECDSA

The Serving Network computes the connectivity credentials.
· The Serving Network generates ephemeral ECDH key pair: {SK.SN.ECDHE, PK.SN.ECDHE} = ECDHE() in the same ECC domain than PK.SN.ECKA

· KS23=DERIVE(SK.SN.ECDHE)[ATK.TRE.ECDHE]
The Serving Network collects the connectivity parameters required for connection, e.g. the IMSI, K, Milenage algorithm parameters. The collection of parameters is named CX_PARAMETERS.

· {M2, H2} = ENCRYPT(KS2[1], KS2[2], KS2[3])[CX_PARAMETERS]
The Serving Network computes a token as following: ATK.SN.ECDHE=SIGN(SK.SN.ECDSA)[PK.SN.ECDHE,UUIDUE, M2,H2]

The Serving Networks sends its credentials to the UE. Those credentials are ATK.SN.ECDHE and CERT.SN.ECDSA.
Step 8
The Tamper Resistant Environment performs the following operations.
The Tamper Resistant Environment performs the following verifications:

· VERIFY(CERT.CI.ECDSA)[CERT.SN.ECDSA]

· VERIFY(CERT.SN.ECDSA)[ATK.SN.ECDHE]

Then, the Tamper Resistant Environment computes the symmetric keys KS2

· KS23=DERIVE(SK.TRE.ECDHE)[PK.SN.ECDHE]
· CX_PARAMETERS = DECRYPT(KS2[1], KS2[2], KS2[3], H2)[M2]
END of 2nd CHANGE

START of 3rd CHANGE
2
References

[a]

AES128: Specification for the Advanced Encryption Standard (AES) - FIPS PUB 197

[b]

BSI Technical Guideline TR-03111: Elliptic Curve Cryptography - Version 2.0

[c]

SHA-256: Specifications for the Secure Hash Standard - FIPS PUB 180-3, 2008

END of 3rd CHANGE

_1547275115.vsd
Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Text

UE

Serving Network

6- UE authentication
Allocation of connectivy parameters

2- Initial Attach Service Request (UUIDUE)

_1547047499.vsd
Text

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Text

TRE MAKER

CERT.PN.ECDSA
SK.PN.ECDSA

TRE

CERT.TRE.ECDSA
SK.TRE.ECDSA
CERT.PN.ECDSA
CERT.CI.ECDSA

TRE MAKER

CERT.CI.ECDSA
SK.CI.ECDSA

Serving Network

CERT.SN.ECDSA
SK.SN.ECDSA
CERT.CI.ECDSA
CERT.SN.ECKA
SK.SN.ECKA

Request Certificate
PK.SN.ECDSA
PK.SN.ECKA

Answer
CERT.SN.ECDSA
CERT.CI.ECDSA
CERT.SN.ECKA

Request Certificate
PK.PN.ECDSA

Request Certificate
PK.TRE.ECDSA

Answer
CERT.TRE.ECDSA
CERT.PN.ECDSA
CERT.CI.ECDSA

