3GPP TSG SA WG3 (Security) Meeting #86
S3-170175
6-10 February 2017, Sophia Antipolis (France)
revision of S3-17xabc
Source:
Nokia
Title:

Handling key synchronization issues in Solution 10

Document for:
Discussion
Agenda Item:
7.6.15
Work Item / Release:
BEST_MTC_Sec
Abstract of the contribution:

Solution 10 in TR 33.863 provides AKA based key generation mechanism for generating session keys at the application layer. There are possibilities of key synchronization issues with this solution, due to race condition or failure in network access authentication. This paper discusses how it’s already handled in Solution #10.
1. Introduction
TR 33.863 - Solution #10 provides AKA-based session key generation as an independent module usable ay any security protocol at the application layer.

In brief, Solution #10 works as follows:

1. Generating e2m_int_key in UE and HSS

· As part of the network access AKA run, HSS derives e2m_int_key from CK, IK and pushes it to EMKS. The HSS also provides RAND based key identifier to EMKS.

· At the end of network access AKA run UE is in possession of the necessary inputs to derive e2m_int_key based on its own copy of CK, IK.
2. Generating e2m_key in UE and EMKS
· When UE is ready to initiate a setup of the chosen application layer security protocol with a particular EMSE, it derives e2m_key with EMSE Id as one of the input keys.

· The UE initiates establishment of the application layer security protocol. It includes key identifier and its identity as parameters in the protocol.

· As an intermediate step during the protocol run, EMSE queries EMKS for the key identified by the key identifier. EMKS selects the correct e2m_int_key, computes e2m_key and returns it to EMSE.

3. The UE and EMSE use e2m_key obtained in previous steps as pre-shared secret to further dervive security protocol session keys
There are possibilities for key synchronization problems to occur in Solution #10 due to race condition or authentication failures. Here’s the relevant text snippet from the TR:
“a) When HSS pushes key to EMKS the HSS does not know whether network access authentication will be successful. If not successful, the UE does not have the latest key pushed to the EMKS. This could happen repeatedly. So, when a UE establishes an application layer connection with the EMSE the UE could have a key that is older than the latest one available at the EMKS.

b) Assume an MME requests re-authentication (which is possible even while the UE is in connected state). The HSS then sends authentication vectors back to the MME and, at the same time, pushes e2m_int_key to the EMKS. At (roughly) the same time the UE establishes an application layer connection with the EMSE, but has not seen the latest Authentication challenge from the MME yet (race condition). Again, the UE could have a key that is older than the latest one available at the EMKS.”
In the next section we discuss how this is addressed in Solution #10.

2. How does Solution #10 solve key synchronization issues
Firstly, it’s important to identify each key uniquely. In Solution #10, each key is identified by a portion of RAND obtained from the authentication vector e.g. the 32 least significant bits of RAND. For a given AKA run, key identifier is therefore derived uniquely in UE and HSS.

Next, the HSS pushes the key identifier to EMKS along with e2m_int_key that it generates during the AKA run. Thus EMKS knows the associated key identifier for a given e2m_int_key.

Finally, in order to support key synchronization, the EMKS does not immediately delete a e2m_int_key in storage when it receives a new e2m_int_key from the HSS for a given UE, but keeps a fixed (small) number of instances of e2m_int_key from the past.

Now, when UE initiates setup of the application layer protocol, it sends to the EMSE the latest version of the key identifier it stores, along with it’s application layer identity.

The EMSE queries EMKS for the e2m key based on the key identifier provided by the UE. The EMKS obtains the associated e2m_int_key from its store and responds to EMKS with the generated e2m_key.

Thus even if the UE had an older version of e2m_int_key, by storing multiple instances of e2m_int_key in its store EMKS is able to obtain the correct e2m_int_key and continue with the derivation of e2m_key.

3. Conclusion

Based on the mechanism described in section 2) above, it can be concluded that Solution #10 has sufficiently strong mechanism to handle key synchronization issues in the UE and EMKS.
