3GPP TSG SA WG3 (Security) Meeting #84
S3-161252
25-29 July 2016 Chennai (India)

revision of S3-161063
Source:
Nokia
Title:
pCR to TR 33.863, v1.1.1: Solution #10 (extends sol. 2): "AKA-based session key generation for application protocols"
Document for:

Approval

Agenda Item:
8.8.3
Work Item / Release:
BEST
Abstract of the contribution:

This contribution presents an update of solution 2 for BEST. This update is presented as a new solution 10 to improve readability. Its main purpose is providing AKA-based session key generation as an independent module usable by security protocols at the application layer.
All the text in clause 6.x below is new, so we did not use revision marks.

1. Pseudo CR

***************First change ********************************

6.x
Solution #10: "AKA-based session key generation for application protocols"
6.x.1
Introduction

The main purpose of the present solution is providing AKA-based session key generation as an independent module usable by any security protocol at the application layer.

Solution 10 leaves security context negotiation (apart from the keys) and protection of transferred data to the application layer protocol.
As an example, it is shown how the present solution will work with pre-shared key DTLS.

The present solution builds on solution #2. The present solution extends solution #2 by providing an example of a standardized interface between the EMSE and the EMKS that enables any application, in the home network or in the trusted third party domain, to obtain e2m keys from the EMKS. Furthermore, the requirements on the application layer security protocols that need to be fulfilled so that the present solution can be used are stated. Furthermore, compared to solution 2, the text expands on the transport of the UE's application layer identities, the usefulness of key identifiers and two aspects of key refresh.

The present solution can be used for CIoT (which is why it is included in the present document). It should be noted, though, that there is no technical reason why the present solution should be restricted to the CIoT use case; it can provide e2m security whenever AKA is run in a mobile network.

This solution introduces E2M Security Endpoint (EMSE), an entity that is authorized to obtain e2m keys from the E2M Key Server (EMKS). An EMSE may reside in an operator's home network, but also in a trusted third party domain (e.g. a CIoT application provider platform). The EMKS always resides in an operator's home network.

There may be multiple instances of an EMSE, with which a UE engages simultaneously or sequentially. There is typically only one instance of an EMKS per HSS.

As usual in 3GPP standardisation, EMSE and EMKS denote functional entities that could be implemented stand-alone or combined with HSS or GGSN or P-GW. EMSE and EMKS could also be combined. The advantage of introducing the EMKS is that the HSS could continue to operate in a stateless fashion.
The following solution description first highlights the features of the present solution, then describes the interface between EMSE and EMKS, and finally show how the solution can be applied using the example of pre-shared key DTLS as the application layer security protocol between UE and EMSE.
6.x.2
Solution description
6.x.2.1
Features

The present solution follows the same functional architecture as in solution #2.

Requirements on the application layer security protocol:

The present solution can be used as a key establishment mechanim for an application layer security protocol if the protocol fulfills the following requirements:

1) The protocol needs to support use with pre-shared keys.

2) The protocol needs to provide a means to transport the user identity (including a key identifier) to the EMSE.
NOTE: This identity transport mechanism necessarily is specific to the particular security protocol.
3) The protocol needs to be able to generate fresh session keys for consecutive instances of the protocol even when the pre-shared key remains the same (cf. also clause on key refresh below).

NOTE: All three requirements are satisfied for (D)TLS and IKE.

Considerations on the user identity in the application layer security protocol:

The UE could use the IMSI. But the UE’s application layer identity used in the security protocol between UE and EMSE does not have be identical to the IMSI. This depends on offline agreements between UE, EMSE, and the mobile network operator.

 If the UE’s application layer identity is different from the IMSI, then two alternatives are available:
1. EMSE translates the UE’s application layer identity to an IMSI and sends IMSI to EMKS.

2. EMSE sends the UE’s application layer identity to the EMKS, and the EMKS translates the UE’s application identity to an IMSI.

For case 1, there may be privacy implications if MNO does not want to share the IMSI with the third party.

For case 2, it may be possible that the third party does not want to share the UE’s application layer identity with the MNO. However, case 2 seems less critical as, for any solution for BEST, the third party depends on the MNO for deriving pre-shared key for its communicaton protocol between the UE and EMSE, which means that the third party has to put a substantial amount of trust in the MNO anyhow. Case 2 therefore is the preferred solution.
Considerations on the key identifier:

The present solution proposes the use of a key identifier for the e2m_key. This key identifier is assumed to be sent along with the UE’s application layer identity from the UE to the EMSE, when application layer security is established, and further from the EMSE to the EMKS when the EMSE fetches a key from the EMKS.

The key identifier may prove useful to synchronize the use of e2m_key at UE and EMSE. Such a need for synchronization could occur, e.g due to the following failure or race conditions:

a) When HSS pushes key to EMKS the HSS does not know whether network access authentication will be successful. If not successful the UE does not have the latest key pushed to the EMKS. This could happen repeatedly. So, when a UE establishes an application layer connection with the EMSE the UE could have a key that is older than the latest one available at the EMKS.

b) Assume an MME requests re-authentication (which is possible even while the UE is in connected state). The HSS then sends authentication vectors back to the MME and, at the same time, pushes e2m_int_key to the EMKS. At (roughly) the same time the UE establishes an application layer connection with the EMSE, but has not seen the latest Authentication challenge from the MME yet (race condition). Again, the UE could have a key that is older than the latest one available at the EMKS.
In order to support key synchronization, it is proposed that the EMKS does not immediately delete a e2m_int_key in storage when it receives a new e2m_int_key from the HSS for a given UE, but keeps a fixed (small) number of instances of e2m_int_key from the past. This is up to the policy of the EMKS.

The present solution envisages two alternatives for defining a key identifier:

1) Use a portion of RAND as contained in the authentication vector, e.g. the 32 least significant bits of RAND. With this approach, the HSS would have to push the relevant portion of RAND from the HSS to the EMKS, together with the e2m_int_key.

2) Use a short hash of the e2m_int_key. The hash would not serve any cryptographic purposes. It should just be long enough to achieve an acceptably small rate of accidental collisions. With this approach, the EMKS would have to compute hashes on all the e2m_int_key values it has stored for a particular UE when the EMKS receives a request from the EMSE to fetch a key.

Alternative 1 is the preferred approach.
Transparency for core network nodes:

The present solution will work transparently to core network. In other words, the present solution does not require any change to SGSNs, GGSNs, MMEs, S-GWs and P-GWs.

Transparency for the USIM:
As for solution#2, the present solution can re-use existing USIMs, with all CIoT-specific operations to be done in the ME.
Key derivation rules:

This solution reuses key derivation rules from solution #2. They are repeated here for the sake of readability of the present solution

As for solution#1, the present solution uses a new key pair CK´, IK´for UMTS PS or GPRS access security between UE and SGSN. This new key pair CK´, IK´ is generated in the HSS and included in the UMTS AKA authentication vector sent to the SGSN. The SGSN will not notice the difference to legacy authentication vectors. For EPS, KASME can be re-used as defined today.

In the present solution, the key used between UE and EMSE is called "e2m_key".
The e2m key is derived in two steps:

(1)
Whenever an Authentication Information Request from the SGSN or the MME arrives at the HSS, the HSS checks the subscription profile for the need to derive an e2m_int_key. The HSS then generates authentication vectors and sends them back to the SGSN or MME. If there is a need to derive an e2m_int_key a new key pair CK´, IK´is included in the authentication vector for UMTS PS or GPRS. Furthermore, the HSS derives e2m_int_key from CK, IK and a string pointing to the purpose of the key use, namely e2m security for CIoT, where the derivation of e2m_int_key has the form

e2m_int_key = KDF (CK||IK, string)

and the string could be set to e.g. "e2m_ CIoT". The HSS the pushes the e2m_int_key to the EMKS.
NOTE: It is expected that the interface between HSS and EMKS will be based on DIAMETER, details will be defined in stage 3.
(2)
The EMKS derives e2m_key from e2m_int_key upon request from an EMSE. As there may be multiple instances of EMSE it becomes necessary to include an identifier of the EMSE in the key derivation in order to achieve key separation between EMSEs. The following is the key derivation rule:

e2m_key = KDF (e2m_int_key, EMSE_Id, string)

Editor's Note: it is ffs whether the additional input 'string' is needed in the derivation of e2m_key. It may be appropriate to allocate FC values for the purpose of the two key derivations in steps 1) and 2) according to TS 33.220 [20], B.2.2.

Key refresh:

There are two aspects to consider:

1) The application layer security protocol requires a fresh session key.

This is the case e.g. when the application layer session is torn down and re-established some time later. It could be that the e2m_key, which is used as pre-shared key, has not changed in the meantime. The present solution does not envisage a means for the application layer to trigger the generation of a new e2m_key. Therefore, it is stated further above as a requirement that application layer security protocol needs to be able to generate fresh session keys for consecutive instances of the protocol even when the pre-shared key remains the same.

2) A new e2m_int_key becomes available due to a re-authentication at the network access layer.

In general, it is not the case that an application layer security protocol can change the pre-shared key during an ongoing session. This means that a new pre-shared key derived from the new e2m_int_key can only be established when the session has been terminated, for reasons determined within the application, and a new session is set up. Then the EMSE will again contact the EMKS and obtain, in this way, a new e2m_key.

 6.x.2.2
Interface between EMKS and EMSE

6.x.2.2.1
Introduction
Editor's Note: The material in this clause describes a candidate interface bewteen EMKS and EMSE. Other examples for this interface should be studied in a normative phase, e.g. the Tsp interface could be an object of study.

The interface between EMKS and EMSE is used by the EMSE for fetching UE-related key to be used in the application layer security protocol between UE and EMSE.

The interface should be standardized to achieve maximum interoperability.

In the following, we describe the example of a RESTful HTTP interface between EMKS and EMSE.
It is described as follows:

· TCP provides communication service at the transport layer

· TLS provides security to the communication

· HTTP based transport of XML data

· XML documents used to embed specific datastructures, such as keys etc.

Figure 6.x.2.2.1-1 illustrates the protocol stack of this reference point.

[image: image1.emf]L2

IP

Physical layer

TLS

HTTP

XML

EMKS

L2

IP

TCP

TLS

HTTP

XML

EMSE

TCP

Data link layer

Network layer

Securitylayer

Application delivery

Specific datastructures

RESTful HTTP

L1

L1

Transport layer

Figure: 6.x.2.2.1-1 RESTful HTTPS between EMKS and EMSE

EMKS and EMSE act as both HTTP client and server. Thus, there is a TCP connection for each direction. This permits bidirectional communication between EMKS and EMSE.

RESTful HTTP is used at the application delivery layer. The content type of the RESTful HTTP is XML.

The unsecured HTTP protocol shall be combined with TLS, as HTTPS, to provide confidentiality and integrity protection. Mutual authentication shall be enabled in TLS for authenticating and allowing only an authorized third party EMSE to access the EMKS. The profile for TLS implementation and usage shall follow the provisions given in 3GPP TS 33.310 [xx], Annex E.
6.x.2.2.2
Procedures over the RESTful HTTP reference point

Following procedures are supported over the RESTful HTTP reference point:

· Initial registration by EMSE

· Obtaining UE specific e2m_key from EMKS

· Deregistration by EMSE

· Subscription to Notification by EMKS

· Notification by EMSE

Editor’s Note: Subscription by EMSE to a particular event, and Notification by EMKS is ffs

6.x.2.2.2.1 Initial registration by EMSE

The EMSE registers with EMKS by sending an HTTP POST message to the EMKS including its identifier (EMSE_Id). The EMKS establishes a session context for this EMSE and returns session id in HTTP 201 CREATED.

6.x.2.2.2.2 Obtaining UE specific e2m key from the EMKS
The EMSE obtains UE specific e2m key from the EMKS by sending an HTTP GET message including an identity of the UE and a key identifier received from the UE. This message is embedded in the following example information flow using DTLS-PSK.

6.x.2.2.2.3 Deregistration by EMSE

When the session needs to be terminated, EMSE may send an HTTP DELETE message including the session ID as the URL address to the EMKS.

6.x.2.3
Example use of solution 10: information flow using pre-shared key DTLS

In this subclause we show how the present solution can be applied using the example of pre-shared key DTLS as the application layer security protocol between UE and EMSE.

Other candidate application layer security protocols include IKEv2 (with pre-shared keys) combined with ESP.

Prerequisite:

a. HSS has processed the Authentication Information Request from the SGSN or MME, and pushed the intermediate key, e2m_int_key to the EMKS.
Network access AKA run is completed and UE is in possession of the necessary inputs for deriving the e2m_int_key, together with the related key identifier.

b. UE is ready to initiate setup of the chosen application layer security protocol with a particular EMSE. UE derives e2m_key using the EMSE_Id.

c. EMSE has registered and established a session with the EMKS. The interface between EMSE and EMKS is integrity- and confidentiality-protected by TLS as shown in the protocol stack in Figure 6.x.2.2.1-1.

[image: image2.emf]UE EMSE EMKS

Compute e2m_key for

the chosen EMSE

RESTful HTTP i/f

2. ServerHello(PSK-based ciphersuite)

ServerHelloDone

1. ClientHello(PSK-based ciphersuite)

8. UE is autenticated

by validating the

Finished message

9. ChangeCipherSpec, Finished

10. EMSE is autenticated

by validating the

Finished message

HSS

Push e2m_int_key

3. Generate TLS

session keys

7. Generate TLS

session keys

EPS AKA or UMTS AKA

EMSE Registration

4. ClientKeyExchange(

psk_identity = UE’s application

identity:key_identifier)

ChangeCipherSpec

Finished

5. HTTP GET (UE’s application identity,

key_identifier)

6. HTTP 201 OK (e2m_key)

DTLS tunnel

Select e2m_key, whose

hash value compares with

the received key_identifier.

Figure: 6.x.2.3 DTLS-PSK session between UE and EMSE based on e2m_key

In the following sequence (D)TLS-PSK is used as an example:

1. UE initiates establishment of a DTLS session by sending TLS message “ClientHello”. This may, for example, contain COAP defined mandatory-to-implement cipher suite TLS_PSK_WITH_AES_128_CCM_8.

2. EMSE responds to the UE with the “ServerHello” and “ServerHelloDone” messages.

3. Using e2m_key (from step c above) as the psk, UE generates TLS session keys.

4. UE sends “ClientKeyExchange”, “ChangeCipherSpec” and “Finished”. UE’s application layer identity and key identifier are sent in the psk_identity value in the “ClientKeyExchange” message.

5. EMSE initiates HTTP GET to obtain the latest UE specific e2m_key from EMKS. EMSE sends UE’s identity value and key identifier in this request message to EMKS.

6. The EMKS selects the right e2m_int_key with the help of the key identifier and computes e2m_key using the EMSE_Id as input. The EMKS then returns e2m_key in the HTTP 201 response to EMSE.

7. EMSE uses the received e2m_key as pre-shared secret as specified for DTLS.

8. EMSE continues with rest of the DTLS session flow.

As a result, a DTLS security session is setup between the UE and EMSE.
6.x.3
Solution evaluation

Solution #10 builds upon Solution #2. Therefore all aspects of solution #2, as indicated in clause 6.2.3, apply to solution #10 as well. In particular, solution#10 is transparent to core network nodes, apart from the HSS; and does not require any changes to SGSN, GGSN, S-GW, or P-GW. In addition, solution #10 provides a standardized interface for the application layer security protocol in 3rd party networks, to fetch keys and use it as pre-shared secret. This enables any application layer protocol to use MNO generated AKA key to generate protocol-specific session keys between the UE and the application layer node (EMSE). Solution #10 provides an essential module in a modular approach to BEST.

***************END OF FIRST CHANGE********************************

****************SECOND CHANGE**
7.2
Solution evaluation summary

The report proposes the following solutions:

-
Solution #1 "UE to HPLMN security based on UMTS/EPS AKA enhancements". This solution uses enhancements to the 3GPP AKA to generate key material used by the end to end or end to middle security mechanisms. The solution is intended for use over the cellular IoT RAT where the middle endpoint is a HSE. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection. Variants of this solution are proposed that differ in how and when the key material is delivered to the non-UE end of the communication as follows:

-
"Variant A" where the HSS/HLR pushes key materials to the relevant HSE when an AKA generation occurs that includes end to middle key generation. In this solution the HSE needs to store the generated keys until they are used.

-
"Variant B" where the HSS/HLR pushes key materials to the relevant HSE when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

-
"Variant C" where the HSE pulls the key materials from the HSS/HLR when an PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

-
"Variant D" where the HSS/HLR pushes key materials to a new standardised key store entity called an End to Middle Key Server (EMKS) when an AKA generation occurs that includes end to middle key generation. The HSE pulls the key materials from the EMKS when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the EMKS needs to store the generated keys until they are used.

-
"Variant E" is a modification of variants a, b, c and d where the USIM only performs an unmodified AKA procedure and the creation of the local end to middle key values is calculated on the ME.

-
Solution #2 "End to middle security based on AKA with an EMSE". This solution defines a new middle endpoint called an E2M Security Endpoint (EMSE). This solution uses the EMKS defined in solution #1d to store the end to middle keysets and the processes in solution #1e where the UE end to middle keys are generated in the ME so that no modifications to the current USIM is required. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection.

-
Solution #3 "Independent VPLMN and e2m security associations". This solution proposes a separate specific AKA run to generate the end to middle key material when they are needed so that there is no inter-relationship or related synchronisation issues with the AKA run for network access. The solution does not require modification of the HSS/HLR or the USIM but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection and uses more power/network resources to deliver as it requires 2 AKA runs. Although this solution requires two AKA procedures initially (Solution 1 and 2 only require one AKA procedure), further AKA runs only depend on the use and timing of the user plane data and not on any aspect of a 3GPP RAT.

-
Solution #4 "Security Policies". This solution describes the sharing of security policies between the HPLMN and Visited PLMN that relate to the frequency and type of security features supported so that the visited network can identify CIoT devices and adjust their security model appropriately. This solution does not address the agreement on key materials or the mechanisms that use these keys to deliver integrity protection and confidentiality protection.

-
Solution #5 "End to End security solution". This solution introduces a new element, the End to End Security Endpoint (EESE) that allows an authorised third party to fetch end to end keysets that have been agreed using one of the methods detailed in solutions 1, 2 or 3. It also presents a key aging and re-agreement mechanism using a timer. It does not however detail the security mechanisms that these keys are used with.

-
Solution #6 "Bearer protection". This solution introduces IPsec ESP for authentication, integrity and confidentiality protection of the user-plane between the UE and the HSE using the keys derived by the UE and HSS and distributed to the HSE according to solutions #1 or #2. For crypto algorithms the solution points the 33.210. The solution does not stipulate on tunnel vs. transport mode ESP and on compression methods. Furthermore the solution does not define the derivation or negotiation of the IPsec ESP Security Association parameters.

-
Solution #7 "End to End". The solution extends solutions 1 and 2 to End to End security. However this solution does not currently deal with mechanisms for LI and optional data cyphering.

-
Solution #8 "Complete end to middle solution". This solution describes a full BEST service including service discovery, session management, secure operation and error management. All of the key issues are addressed fully in this solution.
-
Solution #9 "Complete end to emd solution". This solution describes a full BEST service including service discovery, session management, secure operation and error management. All of the key issues are addressed fully in this solution.
-
Solution #10 "AKA-based session key generation for application protocols": This solution provides a mechanism to use AKA-based session key generation as an independent module usable by any security protocol at the application layer. It leaves security context negotiation (apart from the keys) and protection of transferred data to the application layer protocol. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection.
The solutions are further summarised as follows:

Table 7.2-1: Summary overview of the proposed solutions

	Solution
	Endpoints
	Tampering and eavesdropping protection
	Efficient device power and network use
	Visited PLMN needs addressed
	Confidentiality and integrity mechanism specified
	Nodes potentially effected

	1A
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1B
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1C
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1D
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1E
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, and ME

	2
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	3
	E2M
	Yes
	less efficient
	Yes
	No
	EMKS and ME

	4
	-
	Yes
	efficient
	Yes
	No
	UE

	5
	E2E
	Yes
	efficient
	No
	No
	EMKS, EESE and UE

	6
	E2M
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	7
	E2E
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	8
	E2M
	Yes
	efficient
	Yes
	Yes
	UE, USIM, MME, HSS and HSE

	9
	E2E
	Yes
	Efficient
	Yes
	Yes
	UE, USIM, MME, HSS, HSE and EnSE

	x
	E2E
	Depends on the application layer security protocol
	Depends on the application layer security protocol
	No
	No

(Set up by the application layer protocol)
	USIM, HSS/HLR, ME, EMKS

***************END OF SECOND CHANGE********************************

_1529399043.vsd
IP

L2

Physical layer

TLS

HTTP

XML

EMKS

L2

IP

TCP

TLS

HTTP

XML

EMSE

TCP

Data link layer

Network layer

Security layer

Application delivery

Specific datastructures

RESTful HTTP

L1

L1

Transport layer

_1530042289.vsd
UE

EMSE

EMKS

EPS AKA or UMTS AKA

Compute e2m_key for

the chosen EMSE

4. ClientKeyExchange(
psk_identity = UE’s application identity:key_identifier)
ChangeCipherSpec
Finished

5. HTTP GET (UE’s application identity, key_identifier)

7. Generate TLS

 session keys

EMSE Registration

6. HTTP 201 OK (e2m_key)

DTLS tunnel

RESTful HTTP i/f

10. EMSE is autenticated

by validating the

Finished message

Select e2m_key, whose

hash value compares with

the received key_identifier.

2. ServerHello(PSK-based ciphersuite)
ServerHelloDone

1. ClientHello(PSK-based ciphersuite)

8. UE is autenticated

by validating the

Finished message

9. ChangeCipherSpec, Finished

HSS

Push e2m_int_key

3. Generate TLS

 session keys

