3GPP TSG SA WG3 (Security) Meeting #84
S3-161253
25-29 July 2016 Chennai (India)

revision of S3-161141
Source: Huawei, Hisilicon
Title: A Method for IoT Service Layer Security Bootstrapping

Document for:
Approval
Agenda Item:
8.8.3
Work Item / Release:
FS_BEST_MTC_Sec
Abstract of the contribution: This contribution proposes an IoT service layer security bootstrpapping solution for battery sensitive devices.
1. Introduction

This document proposes an IoT service layer security bootstrapping solution as described below. This solution provides a mechanism for deriving session keys between the IoT device and the application server with the following advantages.

Address all TR 33.863 Key Issues:

1. Key Issue No. 1: It provides integrity protection and confidentiality to all communications between the IoT device and the application server. Confidentiality is invoked as per the legal regulatory of the serving network.

2. Key Issue No. 2: Address the efficient user data protection challenges by allowing keys of at least 128 bits.

3. Key Issue No. 3: Address the legal regulatory by allowing confidentiality support to be invoked as per the legal regulatory of the serving network.

4. Key Issue No. 4: Provide an End-to-End secure solution between the IoT device and the IoT server, this solution can be extended to provide session key(s) that is specific per each IoT application.

Address main performance objective of the study:
5. Optimization of transmitted flows to reduce battery consumption by eliminating the need for another AKA procedure, i.e., GBA-AKA, and thus saves at least four message flows of the procedure, then reduces the power consumption at the IoT device.

6. Use existing 3GPP architecture and network entities/nodes with minimum changes to existing interfaces to accomplish the objectives of this study, TR 33.863.
2. Proposed Changes
**** First Change ****
6.11
Solution #11: A Method for IoT Service Layer Security Bootstrapping Solution
6.11.1
Introduction

This solution provides a mechanism for deriving session keys between the IoT device and the application server with the following advantages.

Note: This solution is not compatible with 2G.
1. Key Issue No. 1: It provides integrity protection and confidentiality keys to the IoT device and the application server which can be used by a transport protocol to secure communications. Confidentiality is invoked as per the legal regulatory of the serving network.

2. Key Issue No. 2: Addresses the efficient user data protection challenges by allowing keys of at least 128 bits.
3.
4.
Address main performance objective of the study:
5. Optimization of transmitted flows to reduce battery consumption by eliminating the need for another AKA procedure, i.e., GBA-AKA, and thus saves at least four message flows of the procedure, then reduces the power consumption at the IoT device.
6. Use existing 3GPP architecture and network entities/nodes with minimum changes to existing interfaces to accomplish the objectives of this technical report.
6.11.2
Solution Description

6.11.2.1
Proposed Architecture

[image: image1.emf]UE E-UTRAN

LTE-Uu

MME

S1-MME

SCEF

SGSN

S3

HSS

Application

Server

T6a

T6b

S6t

Ua

S6a

Figure 6.11.2.1.1 Proposed Architecture for Solution #10

The key network element is:

· Service Capability Exposure Function (SCEF): This is the key entity within the 3GPP architecture for service capability exposure that provides a means to securely expose the services and capabilities provided by 3GPP network interfaces. It is expected that signalling data relevant to the IoT application boostrapping service will terminate at this node. As defined in TS23.682, SCEF has interfaces to the MME/SGSN(T6a/T6b), the HSS(S6t), the application server. The HSE functionality could reside as needed with SCEF.

The functionality of relevant interfaces used by this solution are:

· T6a: An interface between the SCEF and the MME to allow the SCEF to obtain the UE application layer session key (Ks) based on the UE session Identifier (GUTI).

Editor’s Note: Whether using GUTI which doesn’t have one-to-one correspondence with KASME introduces any security threat is for FFS.
· S6a: Utilize this existing interface between the HSS and MME to allow HSS to provide a per-UE application layer session key to MME (Ks); In case of HSS providing multiple AVs, HSS provide one session key per AV.
· Ua: An interface between the UE and the application server that transfers user plane data

6.11.2.2
Security Boostrapping and Key Refreshing
6.11.2.2.1
Overview
This clause describes how to derive session keys between the UE and the application server utilizing existing 3GPP interfaces and the fundamental 3GPP SCEF functionality which is designed to expose 3GPP services capabilities to trusted third parties, e.g., the application servers. This solution provides an option which allows SCEF to pull UE application layer session keys from the MME serving the specific UE and then deliver the session key as requested to the application server.In this option, HSS derives a per-UE per-AV application layer master session key (Ks) and deliver the session key to the MME over interface S6a in User Authentication Info Respone message. This is a minimum impact on the HSS.
6.11.2.2.2
Key Agreement and Boostrapping with HSS deriving Master session key
New IoT application level master session key is agreed upon when the UE perform 3GPP-AKA procedure while accessing the network, i.e. at the phase when the UE and the network mutually authenticate each other. This proposal requires changes, as described in this document, at UE, MME and HSS while using 3GPP-AKA mechanism as detailed in 3GPP TS 33.102 [27] and 3GPP TS 33.401 [28].

Figure 6.11.2.2.2.1 shows the key agreement and boostrapping process.

[image: image2.emf]UE MME HSS SCEF Application

Server

1. User Identity Request

2. User Identity Response

[IMSI]

3.Authentication Data Request

[IMSI]

4.Generate RAND, AUTH

XRES, CK, IK, K

ASME

together with Ks

5. Authentication Data

Response [Authentication

Vector, Ks]

6. User Authentication Request

[RAND, AUTH]

8. User Authentication

Response [RES]

9. Check the given RES,

if it is correct

7.Check AUTH, compute

K

ASME

, and generate RES

10. Authentication Successful,

GUTI

11.Generate Ks, and then

generate Ks_AS

12. Application Request

[GUTI, msg]

13. Key Request [GUTI,AS_ID]

17. Key Response [Ks_AS]

18. Application Response

14. Identify the serving MME with

GUTI and 3GPP operator services

15. Mobile Data Request [GUTI]

16. Mobile Data Answer

[GUTI, Ks]

Figure 6.11.2.2.2.1: 3GPP-AKA Key Agreement and IoT Application Security Bootstrapping Process
 The key steps are as follows:

1. MME starts access authentication request and requires the identity of the UE.

2. The UE responses MME with IMSI to identify himself.

3. The MME sends authentication data request to HSS to ask for materials to authenticate the UE mutually.

4. HSS receives the request and searches the root key shared with UE using IMSI. HSS generates one or more AV, RAND, XRES, AUTH, CK, IK, KASME as in TS33.401. In addition, HSS will generate Ks based on CK, IK for the application service. The key Ks is generated as Ks=KDF(CK||IK, “End-to-End_IOT”).

5. HSS responds to MME with the Authentication Vector. Authentication Vector (AV) consists of AV=(RAND, AUTH, XRES, KASME) as defined in TS33.401. HSS adds the Application layer master session key (Ks) to map to one-to-ome with the AV.

Note: If HSS sends multiple AVs to MME at a time, then HSS includes multiple Ks.

Note: It is recommended to distribute only one AV at a time as the frequency of AKA runs is very low in the IOT scenario.
6. MME sends user authentication request to UE, this request consists of RAND and AUTH as defined in 3GPP TS 33.102 [27] / 3GPP TS 33.401 [28].

7. UE generates keys and check AUTH to authenticate the network, and computes response message RES. All the procedures are defined as in 3GPP TS 33.102 [27] / 3GPP TS 33.401 [28].

8. UE sends the authentication response message RES to MME as defined in 3GPP TS 33.102 [27] / 3GPP TS 33.401 [28].
9. MME checks RES by comparing RES and XRES as defined in 3GPP TS 33.102 [27] / 3GPP TS 33.401 [28].
10. MME sends Authentication Successful to the UE together with GUTI generated by MME. MME updates the UE context with the respective used AV and Ks.

11. UE generates the master key Ks and then generates key Ks_AS for application service. Ks_AS is generated in the form Ks_AS = KDF(Ks, AS_ID), where AS_ID is the identity of the application server.

12. UE sends Application Request to the application server over the Ua interface. This message contains the GUTI received from MME in step 10, and msg. The content of msg depends on specific protocol.

13. Once receiving the Application Request, the application server sends Key Requset to SCEF with GUTI, AS_ID.

14. SCEF receives GUTI, SCEF uses the GUTI and other 3GPP operator services, e.g., network DNS, to identify the serving MME.

15. SCEF send a Mobile Data Request to the MME with the GUTI included.

Note: In case SCEF is not equipped to derive KS-AS, SCEF include the AS_ID in the Mobile Data Request to allow the MME to derive the Ks_AS.

16. The MME search its database for the UE context of the received GUTI. MME responds to SCEF with Mobile Data Answer with the GUTI and the Ks included.

Note: If the MME receives the GUTI and the AS_ID, MME derives the KS-AS key as KDF (Ks, AS-ID) and return to SCEF in the Mobile Data Answer.

17. The SCEF responds to the application server with the application key Ks_AS.
18. The application server returns to the UE with Application Response.
6.11.2.2.2.1 Key Generation in Application Layer.
This proposal presents two possible solutions for the UE and Application to generate session keys. All the session key is based on Ks_AS. In order to ensure the freshness of the session key, the UE will generate a random number as the input material of the session key.
Session Key Generation without Certificate: The UE generates a random number RAND_AS. In addition, the UE computes encryption key Ks_AS_enc and integrity key Ks_AS_int, respectively. The two keys are generated in the way Ks_AS_enc = KDF(Ks_AS, “enc”) and Ks_AS_int = KDF(Ks_AS, “int”). The UE computes the session key as K_app = KDF(Ks_AS_enc, RAND_AS), then to protect the integrity of GUTI and RAND_AS, UE generates the message authentication code t = MACK_AS_int(GUTI, RAND_AS). The UE puts RAND_AS and t into msg in the Application Request. Once received Ks_AS, the application server generates Ks_AS_enc and Ks_AS_int and then verify the message authentication code t. If it is correct, then the application server computes the session key K_app.
Session Key Generation with Certificate: In this solution, the UE is configured with the certificate of the application server. This certificate contains the public key PK_AS of the application server. The UE generates a random number RAND_AS. In addition, the UE computes encryption key Ks_AS_enc and integrity key Ks_AS_int as the above solution. The session key K_app is also generated in the UE as K_app = KDF(Ks_AS_enc, RAND_AS). To protect GUTI and RAND_AS, the public key PK_AS is used to encrypt RAND_AS as C = EncPK_AS(RAND_AS) and the integrity is protected as t = MACKs_AS_int(GUTI, C). The UE puts C and t into msg in the Application Request (RAND_AS is not included in cleartext). Once received Ks_AS, the application server generates Ks_AS_enc and Ks_AS_int and then verify the message authentication code t. If it is correct, the application server uses the private key to decrypt C and get RAND_AS, then computes the session key K_app.
These two solutions ensure the freshness of the session key, this enables that two different sessions between the same UE and application server not to be the same. In addition, the certificate solution provides end-to-end security between the UE and the application server where the wireless operator has no access to the encrypted traffic.
6.11.2.2.3 Key Refreshing
In this proposal, the key refreshing could be triggle by both the UE and application server.
Initiated by UE: The procedure is described in Figure 6.11.2.2.3.1

[image: image3.emf]UE MME SCEF Application

Server

1.Refresh Request

2.Refresh Request

3. Bootstrapping

Renegotiation Request

4. Reauthentication

Request.

Figure 6.11.2.2.3.1: Key Refreshing Initiated by the UE

The steps are as follows:

1. UE initiates key refreshing by sending a Refresh Request to the application server. This message will contain the GUTI.
2. The application server forwards the Refresh Request to the SCEF.
3. A Bootstrapping Renegotiation Request is sent to MME by SCEF.

4. MME then will re-authenticate the UE by initiating a 3GPP-AKA procedure.
Initiated by application server: The procedure is decribed in Figure 6.11.2.2.3.2

[image: image4.emf]UE MME SCEF Application

Server

1.Refresh Request

2. Bootstrapping

Renegotiation Request

3. Reauthentication

Request.

Figure 6.11.2.2.3.2: Key Refreshing Initiated by the Application Server

The steps are similar to the case that the UE intiating procedure except that the application server start the Refresh Request.
6.11.3
Solution Evaluation

This solution creates an end-to-end key shared between UE, IoT Device, and the application server utilizing existing 3GPP architecture and interfaces, that can be used to provide confidentiality and integrity. This solution eliminates the need for GBA-AKA and optimizes the power usage at the IoT device. The solution addresses key agreement between UE and the Application Server.
*********************** Next Change***

7.2
Solution evaluation summary

The report proposes the following solutions:

-
Solution #1 "UE to HPLMN security based on UMTS/EPS AKA enhancements". This solution uses enhancements to the 3GPP AKA to generate key material used by the end to end or end to middle security mechanisms. The solution is intended for use over the cellular IoT RAT where the middle endpoint is a HSE. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection. Variants of this solution are proposed that differ in how and when the key material is delivered to the non-UE end of the communication as follows:

-
"Variant A" where the HSS/HLR pushes key materials to the relevant HSE when an AKA generation occurs that includes end to middle key generation. In this solution the HSE needs to store the generated keys until they are used.

-
"Variant B" where the HSS/HLR pushes key materials to the relevant HSE when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

-
"Variant C" where the HSE pulls the key materials from the HSS/HLR when an PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the HSS/HLR needs to store the generated keys until they are used.

-
"Variant D" where the HSS/HLR pushes key materials to a new standardised key store entity called an End to Middle Key Server (EMKS) when an AKA generation occurs that includes end to middle key generation. The HSE pulls the key materials from the EMKS when a PDP context activation occurs following a successful AKA exchange with the UE that includes end to middle key generation. In this solution the EMKS needs to store the generated keys until they are used.

-
"Variant E" is a modification of variants a, b, c and d where the USIM only performs an unmodified AKA procedure and the creation of the local end to middle key values is calculated on the ME.

-
Solution #2 "End to middle security based on AKA with an EMSE". This solution defines a new middle endpoint called an E2M Security Endpoint (EMSE). This solution uses the EMKS defined in solution #1d to store the end to middle keysets and the processes in solution #1e where the UE end to middle keys are generated in the ME so that no modifications to the current USIM is required. The solution proposes a mechanism that protects the key materials from being exposed to the visited network but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection.

-
Solution #3 "Independent VPLMN and e2m security associations". This solution proposes a separate specific AKA run to generate the end to middle key material when they are needed so that there is no inter-relationship or related synchronisation issues with the AKA run for network access. The solution does not require modification of the HSS/HLR or the USIM but does not cover the mechanisms that use these keys to deliver integrity protection and confidentiality protection and uses more power/network resources to deliver as it requires 2 AKA runs. Although this solution requires two AKA procedures initially (Solution 1 and 2 only require one AKA procedure), further AKA runs only depend on the use and timing of the user plane data and not on any aspect of a 3GPP RAT.

-
Solution #4 "Security Policies". This solution describes the sharing of security policies between the HPLMN and Visited PLMN that relate to the frequency and type of security features supported so that the visited network can identify CIoT devices and adjust their security model appropriately. This solution does not address the agreement on key materials or the mechanisms that use these keys to deliver integrity protection and confidentiality protection.

-
Solution #5 "End to End security solution". This solution introduces a new element, the End to End Security Endpoint (EESE) that allows an authorised third party to fetch end to end keysets that have been agreed using one of the methods detailed in solutions 1, 2 or 3. It also presents a key aging and re-agreement mechanism using a timer. It does not however detail the security mechanisms that these keys are used with.

-
Solution #6 "Bearer protection". This solution introduces IPsec ESP for authentication, integrity and confidentiality protection of the user-plane between the UE and the HSE using the keys derived by the UE and HSS and distributed to the HSE according to solutions #1 or #2. For crypto algorithms the solution points the 33.210. The solution does not stipulate on tunnel vs. transport mode ESP and on compression methods. Furthermore the solution does not define the derivation or negotiation of the IPsec ESP Security Association parameters.

-
Solution #7 "End to End". The solution extends solutions 1 and 2 to End to End security. However this solution does not currently deal with mechanisms for LI and optional data cyphering.

-
Solution #8 "Complete end to middle solution". This solution describes a full BEST service including service discovery, session management, secure operation and error management. All of the key issues are addressed fully in this solution.
-
Solution #9 "Complete end to emd solution". This solution describes a full BEST service including service discovery, session management, secure operation and error management. All of the key issues are addressed fully in this solution.
.-
Solution #11 "Service Layer Bootstrapping Solution". This solution describes an IoT service layer security bootstrapping that allows key network element SCEF to pull application session keys from MME for the application layer. The solution addresses key agreement between UE and the Application Server.
The solutions are further summarised as follows:

Table 7.2-1: Summary overview of the proposed solutions

	Solution
	Endpoints
	Tampering and eavesdropping protection
	Efficient device power and network use
	Visited PLMN needs addressed
	Confidentiality and integrity mechanism specified
	Nodes potentially effected

	1A
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1B
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1C
	E2M
	Yes
	efficient
	Yes
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1D
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	1E
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, and ME

	2
	E2M
	Yes
	efficient
	Yes
	No
	EMKS, HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	3
	E2M
	Yes
	less efficient
	Yes
	No
	EMKS and ME

	4
	-
	Yes
	efficient
	Yes
	No
	UE

	5
	E2E
	Yes
	efficient
	No
	No
	EMKS, EESE and UE

	6
	E2M
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	7
	E2E
	Yes
	efficient
	No
	No
	HSS/HLR, USIM, ME, SGSN, GGSN, MME, S-GW and P-GW

	8
	E2M
	Yes
	efficient
	Yes
	Yes
	UE, USIM, MME, HSS and HSE

	9
	E2E
	Yes
	Efficient
	Yes
	Yes
	UE, USIM, MME, HSS, HSE and EnSE

	X
	E2E
	Depends on the application layer security protocol
	Depends on the application layer security protocol
	No
	No
	UE, MME, HSS

UE
E-UTRAN
LTE-Uu
MME
S1-MME
SCEF
SGSN
S3
HSS
Application Server
T6a
T6b
S6t
Ua
S6a

UE
MME
HSS
SCEF
Application Server
1. User Identity Request
2. User Identity Response [IMSI]
3.Authentication Data Request [IMSI]
4.Generate RAND, AUTH XRES, CK, IK, KASME
together with Ks
5. Authentication Data Response [Authentication Vector, Ks]
6. User Authentication Request [RAND, AUTH]
8. User Authentication Response [RES]
9. Check the given RES, if it is correct
7.Check AUTH, compute KASME, and generate RES
10. Authentication Successful, GUTI
11.Generate Ks, and then generate Ks_AS
12. Application Request [GUTI, msg]
13. Key Request [GUTI,AS_ID]
17. Key Response [Ks_AS]
18. Application Response
14. Identify the serving MME with GUTI and 3GPP operator services
15. Mobile Data Request [GUTI]
16. Mobile Data Answer [GUTI, Ks]

UE
MME
SCEF
Application Server
1.Refresh Request
2.Refresh Request
3. Bootstrapping Renegotiation Request
4. Reauthentication Request.

UE
MME
SCEF
Application Server
1.Refresh Request
2. Bootstrapping Renegotiation Request
3. Reauthentication Request.

