Page 1

3GPP TSG-SA3 Meeting #83
S3-160773
San Jose de los Cabos,Mexico 9-13 May 2016

Revision of S3-160604
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.303
	CR
	0132
	rev
	1
	Current version:
	13.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Editorial corrections to TS 33.303

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	S3

	
	

	Work item code:
	eProSe-EXT- SA3
	
	Date:
	2016-05-02

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Subclauses in 6.1.3.4.3 have the wrong heading format.
Subclause 6.2.3.5 has the wrong number

Cross-referening in some places in subclauses of 6.7.3 are incorrect

Numbering 6.7.3.3.x sould be 6.7.3.2.x

Several subclause of E.5.2.2 have incorrecct heading format
Annex D requires a page break

Annex E heading has additional line

	
	

	Summary of change:
	Corrected the heading format
Corrected the heading number

Make the correct cross-referencing

Corrected the other editorial issue mentioned above

	
	

	Consequences if not approved:
	Specification would be difficult to understand

	
	

	Clauses affected:
	6.1.3.4.3.1, 6.1.3.4.3.2, 6.1.3.4.3.3, 6.1.3.4.3.4, 6.1.3.4.3.5, 6.1.3.4.3.6, 6.2.3.5, 6.7.3.2.1.1, 6.7.3.2.1.2, 6.7.3.2.1.3, 6.7.3.2.2, 6.7.3.2.2.1, 6.7.3.2.2.2, 6.7.3.2.3, 6.7.3.2.3.1, 6.7.3.2.3, Annex D, Annex E, E.5.2.2.8, E.5.2.2.9, E.5.2.2.22, E.5.2.2.23, E.5.2.2.24, E.5.2.2.25, E.5.2.2.26, E.5.2.2.27, E.5.2.2.28, E.5.2.2.29, E.5.2.2.30

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** FIRST CHANGE ****
6.1.3.4.3.1
General

There are three general types of security that are used to protect the restricted discovery messages as they are transferred over the PC5 interface between the UEs.

Firstly, integrity protection is provided by appending a MIC as in Open Discovery (see subclauses 6.1.3.3.1). The MIC is calculated in the sending UE using a received Discovery User Integrity Key (DUIK) and may either be checked at the receiving UE using the supplied DUIK or at the ProSe Function using the DUIK.

Secondly, scrambling protection, which ensures that there is no relationship between the discovery messages sent by a particular UE, i.e. to prevent tracking of a UE over time. A scrambling keystream is calculated from the Discovery User Scrambling Key (DUSK) and the UTC-based counter associated with the discovery slot (see 6.1.3.4.3.5 for more details on the calculation).

Finally, message-specific confidentiality, which provides confidentiality protection for part of the discovery message. This is used either when several UEs use the same DUSK or if it is desired to obfuscate part of the discovery message from some of the UEs that are allowed to discover the UE. A keystream is calculated from the Discovery User Confidentility Key (DUCK), the content of the message and the UTC-based counter associated with the discovery slot (see 6.1.3.4.3.6 for more details on the calculation).

The security procedures that are applied at the sending and receiving UE are controlled by the ProSe Function by sending the Code-Sending Security Parameters and/or Code-Receiving Security Parameters to the appropriate UE (i.e. the UE shall support all of integrity protection, scrambling and message specific confidentiality) To achieve integrity protection for a ProSe restricted discovery message, either a DUSK or a DUIK needs to be provided. When a DUCK is used to apply message specific confidentiality, a DUIK is required for integrity protection as more than one message is being protected. Examples of combinations of Discovery User Keys according to use case type is provided in Annex G..

At the receiving side, the scrambling protection must be undone before any matching can be attempted. Given that the operation of undoing message-specific confidentiality is computationally intense, the matching operation that precedes it should have a very minimal chance of a false positive. To this end, the ProSe Function should ensure the number of bits in a discovery message that can be matched after any scrambling has been undone is at least 16 (leading to a false positive chance of 1 in 65,536 or less).

6.1.3.4.3.2
Message Processing in the sending UE

The UE sending a discovery message receives the Code-Sending Security Parameters from the ProSe Function (as described in the security flows) to indicate how to protect the message. The Code-Sending Security Parameters may contain a DUSK and may contain a DUIK. The Code-Sending Security Parameters may contain both, a DUCK and an Encrypted_bits_mask.

The UE sending a discovery message does the following steps:

1.
Form Discovery Message (e.g. add Suffix if only Prefix was allocated).

2.
Calculate MIC if a DUIK was provided, otherwise set MIC to all zeros

3.
Add message-specific confidentiality to the message if DUCK was received

4.
Append MIC to the output of step 3.

5.
Add scrambling over the output of step 4 if the DUSK was received.

6.1.3.4.3.3
Protected message processing in the receiving UE

The Code-Receiving Security Parameters received from the ProSe Function (as described in the security flows) are used to indicate to a UE how a received discovery message is protected. The Code-Receiving Security Parameters may contain a DUSK, may contain either a DUIK or an indication whether to use Match Reports for MIC checking. The Match Reports option is not allowed for ProSe Query Codes. The Code-Receiving Security Parameters may also contain both a DUCK and a corresponding Encrypted_bits_mask.

The UE receiving a Discovery Message does the following steps:

1.
Undo scrambling (as in step 5 of sending UE) if a DUSK was received.

2.
Check for match on the bits of the message that are not encrypted using message specific confidentiality. If no match, then abort.

NOTE 1: Some bits that the discovery filter indicates to be matched, may be encrypted by message-specific confidentiality at this stage. The UE can look for a match on the other bits after this step to minimise the amount of processing performed before finding a match.

3.
Undo message-specific confidentiality if a DUCK was received (as in step 3 of sending UE)

4.
Check for full match if only a match on non-encrypted bits was found in 3. If no match then abort

5.
If a MIC check is required, check MIC directly (if a DUIK was given in the Discovery Filter Security Parameters) or via Match Report if indicated in the Discovery Filter Security Parameters.

NOTE 2: Requiring a checking of the MIC (at either the UE or via Match Reports) may only be omitted when the scrambling protection provides integrity protection of the bits of the message that are of interest to the receiving UE. Such integrity protection is only provided when (1) a given DUSK protects exactly one ProSe Code that the receiver matches, or (2) when message-specific confidentiality is applied to a ProSe Code but the receiving UE is not provided with the DUSK to remove the message-specific confidentiality and all the non-encrypted bits take a fixed value that the receiver matches. In the first case, if an attacker changes any bit of the message, the match will fail. In the second case, if an attacker changes a non-encrypted bit the match will fail and changing an encrypted does nothing as the receiving UE ignores these bits anyway. In latter case, the receiving UE could not successfully check the MIC.

6.1.3.4.3.4
Integrity protection description

The sending UE does the following

1. Compute output bitsequence from DUIK, Message, and UTC-based counter passed through a MIC calculation function in Annex A.2.

2. Take the 4 bytes of the output of the function and set that as the value of the MIC for this Message.

The receiving UE or ProSe Function does the exact same steps but also does a comparison between the computed MIC and the received MIC.

6.1.3.4.3.5
Scrambling description

The sending UE does the following:

1. Set the 4 LSBs of the UTC-based counter equal zero, for the purpose of this scrambling calculation only.

2. Compute the time-hash-bitsequence from DUSK and the UTC-based counter(modified as in step 1), passed through a keyed hash function.

3. XOR the time-hash-bitsequence with the entire Discovery Message (including MIC) being processed.

The receiving UE does the exact same steps except applied to the received message being processed.
6.1.3.4.3.6
Message-specific confidentiality description

The sending UE does the following:

1. Compute Key_calc_mask = (Encrypted_bits_mask XOR 0xFF..FF) || 0xFFFFFFFF

2. Calculate Keystream = KDF (DUCK, UTC-based counter, (Key_calc_mask AND (Message || MIC))).

3.
XOR (Keystream AND Encrypted_bits_mask) into the Message.

The receiving UE does the exact same steps except applied to the received Discovery Message being processed.
**** NEXT CHANGE ****

6.2.3.5
Protection of traffic between UE and ProSe Key Management Function

In order to protect the UE-initiated messages between the UE and ProSe Key Management Function, the UE shall support the procedures for the UE given in subclause 5.3.3.2 and the ProSe Key Management Function shall support the procedures for the network function given in subclause 5.3.3.2.
The MIKEY messages are protected as described in subclause 6.2.3.3.2.3.
**** NEXT CHANGE ****

6.7.3.2.1.1
Remote UE attaching to a ProSe UE-to-network relay

There are several possible ways that the parameters needed for UE-to-network relay can be provisioned onto the Remote UE and UE-to-network relay. The flow described in Figure 6.7.3.2.1.1-1 is for the case when the general pararmeters are fetched from the ProSe Function(s). In other cases some of the steps can be omited if the relevant parameters are already in place. The figure shows only the parameters that are relevant to the UE-to-network relay security and not all the parameters carried by each message.

[image: image1.emf]5a. Direct Security Mode Command (K

D

Freshness Parameter, GPI)

Remote

UE

UE-to-network

relay

ProSe

Function(s)

PKMF of

Relay

0a. Remote UE get provisioned relay discovery

parameters plus PKMF address

1a. Key Request (Relay Key Required, PRUK ID)

1b. Key Response (PRUK, PRUK ID)

0c. Relay get provisioned relay discovery

parameters plus PKMF address

0d. Get Discovery security material

2. Model A or B Relay Discovery

0b. Get Discovery security material

3. Direct Communication Request (PRUK ID

or IMSI, Relay Service Code)

4a. Key Request (PRUK ID or IMSI, Relay Service

Code, Nonce_1)

4c. Key Response (K

D

, K

D

Freshness Parameter, GPI,

Remote UE Identity)

5b. Direct Security Mode Complete ()

HSS/BSF

of UE

4b. Fetch GPI or AV for user

Figure 6.7.3.2.1.1-1: UE-to-network relay security flows

0. The Remote UE and the UE-to-network relay fetch the parameters necessary to act as a Remote UE and UE-to-network relay respectively (see TS 23.303[2]), the PKMF address for accessing the relay and the security parameters required to protect the relay discovery messages (see subclause 6.6).

NOTE:
Part of step 0b may be performed at the same time as step 1a to 1b as the same messages are used to initiate fetching the keys for protecting relay discovery.

1a. The Remote UE sends a Key Request message to the PKMF of the UE-to-network relay. The message indicates that the Remote UE is requesting a ProSe Relay User Key (PRUK) from the PKMF. If the Remote UE already has a PRUK from this PKMF, the message shall also contain the PRUK ID of the PRUK.

1b. The ProSe Key Management Function shall check that the Remote UE is authorised to receive UE-to-network Relay service from one of its relays. This is done by using the Remote UE identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Remote UE is successfully authorised, the PKMF sends a Key Response message to the Remote UE that may contain a PRUK and PRUK ID. If a PRUK and PRUK ID are included, the Remote UE shall store these and delete any previously stored ones for this ProSe Key Management Function.

2. The Remote UE discovers the UE-to-network Relay using either model A or model B discovery.

3. The Remote UE sends a Direct Communication Request. The Long Term ID shall contain the PRUK ID of the PRUK that the Remote UE want to use to get relay connectivity if the Remote UE has a PRUK for this relay and an attempt to connect to this relay has not been rejected due to the PRUK ID not being recognised. Otherwise the Remote UE shall use its IMSI in the Long Term ID. The Direct Communication Request contains the Relay Service Code that the Remote UE would like to access.

4a. The UE-to-network relay sends a Key Request message to the PKMF. The message shall contain the PRUK ID or IMSI, the Relay Service Code and Nonce_1 (see subclause 6.5.5.2) provided by the Remote UE. The PKMF identifies the UE by the PRUK ID or IMSI. The PKMF checks the context of the Remote UE to confirm whether it can connect to the network via the selected ProSe UE-to-network Relay for the given Relay Service Code.

4b. If the PKMF confirms the Remote UE can connect to the network via the selected ProSe UE-to- network Relay, the PKMF decides if it requires a new PRUK for this UE, i.e. policy in the PKMF decides that PRUK ID needs refreshing or the relay provided the IMSI of the UE. If so the PKMF proceeds as follows:

If the PKMF supports the Zpn interface to the BSF of the UE, the PKMF shall request a GBA Push Info (GPI – see TS 33.223[38]) for the Remote UE from the BSF. When requesting the GPI, it includes a non-zero 64-bit PRUK ID in the P-TID field. On reception of the GPI, the PKMF uses Ks(_ext)_NAF as the PRUK.

If the PKMF support the PC4a interface to the HSS of the UE, then the PKMF shall request an Authentication Vector (AV) for the UE. On receiving the AV, the PKMF locally forms the GPI including a non-zero 64-bit PRUK ID in the P-TID field and sets PRUK as above.

4c. The PKMF generate a random number as the KD Freshness Parameter. The PKMF uses the PRUK to calculate KD with the Relay Service Code, Nonce_1 and KD Freshness Parameter as inputs. The PKMF shall send the Remote UE Identity, KD, KD Freshness Parameter and the GPI if used to calculate a fresh PRUK to the UE-to-network relay.

5a. Using the supplied KD to protect the message, the UE-to-network relay sends a Direct Security Mode Command message to the Remote UE (see 6.5.2.2). This message shall contain the KD Freshness Parameter and the GPI if it received them from the PKMF.

5b. If the Remote UE receives a GPI, it calculates a new PRUK and associated PRUK ID (see step 4b above). The Remote UE derives KD from its PRUK and the received KD Freshness Parameter, Nonce_1 and the Relay Service Code (as described in Annex A.Y). It then processes the Direct Security Mode Command as described in 6.5.2.2. If this is successful, the Remote UE responds with a Direct Security Mode Complete message and the Remote UE and UE-to-network relay may start to exchange user data.

6.7.3.2.1.2
Re-synchronisation in GBA Push authentication
This subclause provides the flows when the UE discovers a synchronisation failure when processing the authentication challenge that was sent to it as part of the GPI (for details of synchronisation failures – see TS 33.102[42]). Synchronisation failures can happen in both the attachment flow (described in subclause 6.7.3.2.1.1) and the rekeying flow (described in subclause 6.7.3.1.3). The re-synchronisation flow is shown in figure 6.7.3.2.1.2-1, which only shows the contents of messages that are different for the synchronisation case.

[image: image2.emf]1a. Direct Security Mode Command ()

1b. Direct Security Mode Fail (RAND, AUTS)

Remote

UE

UE-to-network

relay

PKMF of

Relay

2a. Key Request (RAND, AUTS)

2c. Key Response ()

HSS/BSF

of UE

2b. Fetch GPI or AV for user

(RAND, AUTS)

3a. Direct Security Mode Command ()

3b. Direct Security Mode Complete ()

0. Attach or rekeying flows before the Direct Security Mode Command

Figure 6.7.3.2.1.2-1: Re-synchronisation flows

This steps are the identical to the Attach and rekeying flows up to the Direct Security Mode Command in these flows

1a. The Direct Security Mode Command contains the same parameters as the Direct Security Mode Command in the Attach or rekeying flows. On processing the GPI parameter contained in this message, the ME receives a synchronisation failure response for the USIM.

1b. The Remote UE send a Direct Security Mode Failure to the relay that contains the RAND and AUTS parameters

2a. The relay send a Key Request message to the PKMF of the Relay and includes the RAND and AUTS received from the Remote UE.

2b. If the PKMF supports the Zpn interface to the BSF of the UE, the PKMF shall request a GBA Push Info (GPI – see TS 33.223[38]) for the Remote UE from the BSF and include the RAND and AUTS parameters. When requesting the GPI, it includes the 64-bit PRUK ID in the P-TID field. On reception of the GPI, the PKMF uses Ks(_ext)_NAF as the PRUK.

If the PKMF support the PC4a interface to the HSS of the UE, then the PKMF shall request an Authentication Vector (AV) for the UE and include the RAND and AUTS parameters. On receiving the AV, the PKMF locally forms the GPI including the 64-bit PRUK ID in the P-TID field and sets PRUK as above.

2c, 3a and 3b. These messages are identical to the corresponding messages in the Attach and rekeying flows.

6.7.3.2.1.3
Rekeying procedures
Due to the asymmetric nature of the keying for relays, there are three rekeying cases that need to be considered. Firstly there is the rekeying that only changes KD-Sess but not KD. Secondly there is the rekeying that is initiated by the Remote UE that changes KD and finally rekeying that is initiated by the relay that changes KD. Each of these is described in turn.

Rekeying without changing KD happens exactly as described in subclause 6.5.5.3. The Remote UE includes its PRUK ID as the Long Term ID in the Direct Rekey Request messages, whereas the relay does not include a Long Term Key ID.

A rekeying that changes KD that is triggered by the Remote UE is shown in figure 6.7.3.2.1.3-1. The steps follow subclause 6.5.5.3 and only message contents that are specific to this use are included

[image: image3.emf]1. Direct Rekey Request (PRUK ID)

Remote

UE

UE-to-network

relay

PKMF of

Relay

2a. Key Request (PRUK ID)

2c. Key Response ()

HSS/BSF

of UE

2b. Fetch GPI or AV for user ()

3a. Direct Security Mode Command ()

3b. Direct Security Mode Complete ()

Figure 6.7.3.2.1.3-1: Rekeying KD when rekeying was initiated by the Remote UE

1; The Remote UE send a Direct Rekey Request including its PRUK ID to the Relay.

2a, 2b, 2c, 3a and 3b. The content and handling of these messages are the same as messages in the Attach flow (subclause 6.7.3.2.1.1) except the security contexts are handled as in subclause 6.5.5.3.

A rekeying that changes KD that is initiated by the relay proceeds as follows. The relay sends a Direct Key Request that does not contain a Long Term ID. Instead of responding to this message, the Remote UE sends its own Direct Rekey Request and the procedure continues as for the rekeying that changes KD that is triggered by the Remote UE.
6.7.3.2.2
Messages between the Remote UE and ProSe Key Management Function

6.7.3.2.2.1
General

Key Request and Response messages are exchanged between the Remote UE and ProSe Key Management Function. The Remote UE uses these messages to request a PRUK to use with relays. These messages are detailed in the following subclauses.

6.7.3.2.2.2
Key Request and Key Response messages

The purpose of these messages is for the Remote UE to request the PRUK from the ProSe Key Management Function. The Remote UE knows from which ProSe Key Management Function(s) to get the needed PRUK(s) as the FQDN(s) of the PKMF(s) are either pre-provisioned or provided by the ProSe Function in the HPLMN of the Remote UE.

When sending a Key Request for a PRUK, the Remote UE shall include all the relevant details of all types of keys that the Remote UE is expecting to receive from the PKMF, e.g. any PGKs for one-to-many ProSe communication.

[image: image4.emf]Remote

UE

PKMF of

Relay

Key Request

Key Response (Success/Failure)

Figure 6.7.3.2.2.2-1: Key Request/Response for Remote UE

The protection for the Key Request and Key Response message is described in subclause 6.7.3.4.

When sending a Key Request message to request the ProSe Key Management Function to send to either get a PRUK or ensure its PRUK is upto date, the Remote UE shall include the following information;

-
An indication of whether the Remote UE wants to receive PRUKs from this PKMF.

-
PRUK ID (if any) that the Remote UE has for this PKMF. If it has none it send an all zero PRUK ID.

The ProSe Key Management Function shall check that the Remote UE is authorised to receive PRUKs. This is done by using the Remote UE identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Remote UE is not authorised, then the ProSe Key Management Function responds with the appropriate error.

The ProSe Key Management Function responds to the Remote UE with a Key Response message that includes the following parameters:

-
If the Remote UE is authorised to receive PRUKs, then the message may include a PRUK and PRUK ID

-
Otherwise, a status code to indicate why PRUKs will not be supplied.

If a PRUK and PRUK ID are included, the Remote UE shall store these and delete any previously stored ones that were obtained from this ProSe Key Management Function.

6.7.3.2.3
Messages between the Relay and ProSe Key Management Function

6.7.3.2.3.1
General

There are only Key Request/Response messages exchanged between the UE-to-network Relay and ProSe Key Management Function.

6.7.3.2.3.2
Key Request and Key Response messages

The purpose of these messages is for the Relay to request the KD from the ProSe Key Management Function.

[image: image5.emf]Relay

PKMF of

Relay

Key Request

Key Response (Success/Failure)

Figure 6.7.3.2.3.2-1: Key Request/Response for Relay

The protection for the Key Request and Key Response message is described in subclause 6.7.3.4.

When sending a Key Request message to request the ProSe Key Management Function to request a KD, the UE-to-network relay shall include the following information;

-
Either the PRUK ID or the IMSI that was provided in the Direct Communication Request message or Direct Rekey Request;

-
Relay Service Code that the Remote UE requested to use;

-
Nonce_1 that was sent from the Remote UE to the UE-to-network relay in either the Direct Commuications Request or Direct Rekey Request that triggered this Key Request; and

-
RAND and AUTS, in the case of a synchronisation failure of the AV in the GPI.

The ProSe Key Management Function shall check that the Relay is authorised to serve the identified Remote UE for the supplied Relay Service Code. This is done by using the Relay’s identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Relay is not authorised or the Remote UE can not be identified, then the ProSe Key Management Function responds with the appropriate error.

If the ProSe Key Management Function decides to provide a KD to the UE-to-network relay, then it generates a random number that it sends as the KD Freshness parameter to the UE-to-network relay. The ProSe Key Management Function also calculates the KD (as described in Annex A.Y) from either the PRUK related to the supplied PRUK ID or the new PRUK if this is to be updated (see subclause 6.X.3.2.1.1). In addition to these parameter, the ProSe Key Management Function also provides a Remote UE Identity that the UE-to-network relay provides to the MME. The Remote UE Identity is either the IMSI, MSISDN or a 128-bit string.

NOTE: In general, IMSI should not be sent outside of the operator network in order to protect user privacy. The UE-to-Network Relay cannot be regarded as a network entity in the traditional sense e.g. as an eNB. On the other hand, the PKMF may have a sufficient level of trust in a UE-to-Network Relays to provide the IMSI. Instead of sending the IMSI, the PKMF can send a 128-bit string to the UE-to-Network Relay instead of the IMSI. The string should be such that the MME map the character string to a wanted Remote UE identity (e.g. IMSI) but that the UE-to-Network Relay cannot deduce the Remote UE identity. How this mapping is done in the MME has not be specified by SA3. The mapping information needs to be provisioned into the MME.

The ProSe Key Management Function responds to the Relay with a Key Response message that includes the following parameters:

-
For a successful case,

-
a KD;

-
KD Freshness parameter;

-
an optional GPI; and

-
Remote UE Identity.

-
Otherwise, a status code to indicate why KD will not be supplied.
**** NEXT CHANGE ****

Annex D:
Void
Annex E (Normative):
Key Request and Response messages

**** NEXT CHANGE ****

E.5.2.2.8
PMK ID

This parameter is used to identify a PMK. It is an 8 octet long binary parameter.

E.5.2.2.9
PMK

This parameter is a key that is used to protect MIKEY messages. It is a 32 octet long binary parameter.
**** NEXT CHANGE ****

E.5.2.2.22
Public Safety Discovery Security Capabilities

This parameter is used to indicate the UE’s security capabilities for protecting Public Safety Discovery messages. It is a binary parameter of length 1 octet that is encoded as shown in table E.5.2.2.22-1.

Table E.5.2.2.22-1: Public Safety Discovery Security Capabilities IE

	

	Scrambling protection bit (octet 1, bit 8)

0

Scrambling is not supported

1

Scrambling is supported

	

	Bits 1- 7 of octet 1 are spare and shall be coded as zero.

	

E.5.2.2.23
Relay Service Code

This parameter is used to indicate the Relay Service Code for which the UE is requesting keys. It is a 24-bit long string.

E.5.2.2.24
PSDK ID

This parameter is used to indicate the PSDK IDs for a particular Relay Service Code or Discovery Group ID. It is an integer in the 0-255 range.

E.5.2.2.25
Discovery Group ID

This parameter is used to indicate the Discovery Group ID for which the UE is requesting keys. It is a 24-bit long string.

E.5.2.2.26
Protection Profile

This parameter is used to indicate which out of scrambling, integrity protection and message-specific confidentiality will be applied to protect the discovery. It is a binary parameter of length 1 octet that is encoded as shown in table E.5.2.2.26-1.

Table E.5.2.2.26-1: Selected security algorithm information element

	Scrambling protection bit (octet 1, bit 8)

0

Scrambling is not used for this discovery

1

Scrambling is used for this discovery

Integrity protection bit (octet 1, bit 7)

0

Integrity protection is not used for this discovery

1

Integrity protection is used for this discovery

Message specific confidentiality bit (octet 1, bit 6)

0

Message specific confidentiality is not used for this discovery

1

Message specific confidentiality is used for this discovery

Bits 1-5 of octet 1 are spare and shall be coded as zero.

	

E.5.2.2.27
Encrypted bit mask

This parameter is included if message-specific confidentilaity is to used for the discovery. It is used to indicate which bits of the message have message specific confidentiality applied to them. It is a binary parameter of length 23 octets.

E.5.2.2.28
Key Type ID

This parameter is used to indicate which discovery (relay or group member) the key belongs to when it arrives in a MIKEY message. It is a 24-bit long string parameter.
E.5.2.2.29
Current time

This parameter proviodes the UE with the time at the PKMF, and along with the Max Offset parameter, is used to ensure that the time the UE assoicates with the discovery slot is reasonably close to the real time. It is of type Date and Time.

E.5.2.2.30
Max Offset

This parameter indicates how close the time associated with the discovery slot needs to be to the time provided by the PKMF. Max Offset is measured in seconds. It is an integer in the 1-32 range.
**** END OF CHANGES ****

