

3GPP TS 55.251 V0.2.1 (2016-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Specification of the GEA5 encryption and GIA5 integrity algorithms for GPRS;

GEA5 and GIA5 algorithm specification
(Release 13)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.png]=

A GLOBAL INITIATIVE

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
6
4 Introductory information
6
4.1
Introduction
6
4.2
Notation
6
4.2.1
Radix
6
4.2.2
Conventions
6
4.2.3
Bit/Byte ordering
6
4.3
List of Variables
7
5
CONFIDENTIALITY ALGORITHM GEA5
8
5.1.
Introduction
8
5.2.
Inputs and Outputs
8
5.3.
Components and Architecture
8
5.4.
Initialisation
8
5.5.
Keystream Generation
9
5.6.
Output Octets
9
6.
INTEGRITY ALGORITHM GIA5
9
6.1.
 Introduction
9
6.2.
Inputs and Outputs
9
6.3.
Components and Architecture
10
6.3.1.
SNOW 3G
10
6.3.2.
MULx
10
6.3.3.
MULxPOW
10
6.3.4.
MUL
10
6.4.
Initialisation
11
6.5.
Calculation
11
Annex A (informative): Mathematical background of some operations of the GIA5 Algorithm
13
A.1.
The function EVAL_S
13
A.2.
The function MUL(V, P, c)
13
Annex B (informative): Implementation options for some operations of the GIA5 Algorithm
13
B.1
Overview
13
B.2.
Procedure Pre_Mul_P
14
B.3.
Function Mul_P
14
Annex C (informative): Figures of the GEA5 and GIA5 Algorithms
15
Annex D (informative): Simulation Program Listing
17
D.1
GEA5
17
D.1.1
Header File
17
D.1.2
Code
18
D.2
GIA5
19
D.2.1
Header File
19
D.2.2
Code
19
Annex E (informative): Change history
22

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of the 3GPP confidentiality algorithm GEA5 and the 3GPP integrity algorithm GIA5.

This document is the first of three, which between them form the entire specification of the 3GPP confidentiality algorithm GEA5 and the 3GPP integrity algorithm GIA5:

-
3GPP TS 55.251: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Specification of the GEA5 encryption and GIA5 integrity algorithms for GPRS; GEA5 and GIA4 algorithm specification".
-
3GPP TS 55.252: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Specification of the GEA5 encryption and GIA5 integrity algorithms for GPRS; Implementers' test data".

-
3GPP TS 55.253: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Specification of the GEA5 encryption and GIA5 integrity algorithms for GPRS; Design conformance test data".

1
Scope

The present document defines the technical details of the 3GPP confidential algorithm GEA5 and the 3GPP integrity algorithm GIA5.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TS 33.216: "Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2; Document 2: SNOW 3G specification”
3
Definitions, symbols and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

Definition format (Normal)

<defined term>: <definition>.

example: text used to clarify abstract rules by applying them literally.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

=
The assignment operator.

(
The bitwise exclusive-OR operation.

||
The concatenation of the two operands.

KASUMI[x]k
The output of the KASUMI algorithm applied to input value x
using the key k.

X[i]
The ith bit of the variable X. (X = X[0] || X[1] || X[2] || …..).

Yi
The ith block of the variable Y. (Y = Y0 || Y1 || Y2 || ….).
ceiling(x)
The smallest integer greater than or equal to the real number x.

&n
The bitwise AND operation in an n-bit register.

<<n t
t-bit left shift in an n-bit register.

>>n t
t-bit right shift in an n-bit register.
3.3
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

CBC-MAC
Cipher Block Chaining Message Authentication Code
MAC
Message Authentication Code
4 Introductory information

4.1
Introduction

The confidentiality algorithm GEA5 is a stream cipher that is used to encrypt/decrypt blocks of data under a confidentiality key KC128. The block of data may be between 1 and 65536 octets long. The algorithm uses SNOW 3G [2] as a keystream generator.
The integrity algorithm GIA5 computes a 32-bit MAC (Message Authentication Code) of a given input message using an integrity key KI128. The approach adopted uses SNOW 3G.
4.2
Notation

4.2.1
Radix

The prefix "0x" indicates hexadecimal numbers.

4.2.2
Conventions

The assignment operator "=", as used in several programming languages.

<variable> = <expression>

means that <variable> assumes the value that <expression> had before the assignment took place. For instance,

x = x + y + 3

means

(new value of x) becomes (old value of x) + (old value of y) + 3.

4.2.3
Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the least significant.

For example an n-bit MESSAGE is subdivided into 64-bit substrings MB0, MB1 … MBi so if the message is:

0x0123456789ABCDEFFEDCBA987654321086545381AB594FC28786404C50A37…

then:

MB0 = 0x0123456789ABCDEF
MB1 = 0xFEDCBA9876543210
MB2 = 0x86545381AB594FC2
MB3 = 0x8786404C50A37…

In binary this is:

000000010010001101000101011001111000100110101011110011011110111111111110…

with
MB0 = 0000000100100011010001010110011110001001101010111100110111101111
MB1 = 1111111011011100101110101001100001110110010101000011001000010000
MB2 = 1000011001010100010100111000000110101011010110010100111111000010
MB3 = 1000011110000110010000000100110001010000101000110111…

4.3
List of Variables

CONSTANT-F
a 32-bit parameter which is constant for any given FRAMETYPE input.

DIRECTION
the 1-bit input to both the GEA5 and GIA5 functions indicating the direction of transmission (uplink or downlink).

FRAMETYPE
an 8-bit input to the GEA5 and GIA5 functions indicating the type of frame to be protected.

INPUT
the 32-bit time variant input to the GEA5 function

INPUT-I
the 32-bit time variant input to the GIA5 function

KC128
the 128-bit confidentiality key.

KI128
the 128-bit integrity key.

KS[i]
the ith bit of keystream produced by the keystream generator.

L
the number of 32-bit words of SNOW 3G keystream that are generated by GEA5 (equal to ceiling(M/4)).

LENGTH
a 64 bit parameter defined within GIA5 which specifies the number of bits of message to be MAC’d (equal to 8 times M).

M
the input to the GEA5 function which specifies the number of octets of output required (1-65536); also the input to the GIA5 function which specifies the number of octets of message to be MAC’d (1-65536).

MAC
the 32-bit message authentication code (MAC) produced by the integrity function GIA5.

MESSAGE
the input bitstream of LENGTH bits that is to be processed by the GIA5 function.

OUTPUT
the output octets from the GEA5 function.

S1, S2, …
a sequence of 64-bit words derived from MESSAGE and LENGTH which is used within GIA5 to construct the MAC

z1, z2, …
the 32-bit words forming the keystream sequence of SNOW 3G. The word produced first is z1, the next word z2 and so on.
5
CONFIDENTIALITY ALGORITHM GEA5

5.1.
Introduction

The confidentiality algorithm GEA5 is a stream cipher that encrypts/decrypts blocks of data between 1 and 65536 octets in length.

5.2.
Inputs and Outputs

The inputs to the algorithm are given in Table 5.2.1, the output in Table 5.2.2:

Table 5.2.1: GEA5 inputs

	Parameter
	Size (bits)
	Comment

	INPUT
	32
	Frame dependent input INPUT[0]…INPUT[31]

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	FRAMETYPE
	8
	Input value signifying the type of frame to be protected

	KC128
	128
	Confidentiality key KC128[0]….KC128[127]

	M
	
	The number of octets of output required in the range 1 to 65536 inclusive

Table 5.2.2: GEA5 output
	Parameter
	Size (bits)
	Comment

	OUTPUT
	8M
	Keystream octets OUTPUT{0}….OUTPUT{M-1}

5.3.
Components and Architecture

The keystream generator is based on SNOW 3G that is specified in [2]. SNOW 3G is a word oriented stream cipher and generates a keystream in multiples of 32-bits.

5.4.
Initialisation

This section defines how the keystream generator is initialised with the key variables before the generation of keystream bits.

First the input FRAMETYPE is expanded to a 32-bit parameter CONSTANT-F (since it will be a constant for any given frame type) by setting the 24 most significant bits to zero:

CONSTANT-F = 0 … 0 || FRAMETYPE

The following variables all have length 32 bits and are presented with the most significant bit on the left hand side and the least significant bit on the right hand side.

K3 = KC128[0] || KC128[1] || KC128[2] || … || KC128[31]

K2 = KC128[32] || KC128[33] || KC128[34] || … || KC128[63]

K1 = KC128[64] || KC128[65] || KC128[66] || … || KC128[95]

K0 = KC128[96] || KC128[97] || KC128[98] || … || KC128[127]

IV3 = INPUT[0] || INPUT[1] || INPUT[2] || … || INPUT[31]

IV2 = 00000 || DIRECTION[0] || 0 … 0

IV1 = (INPUT[0] || INPUT[1] || INPUT[2] || … || INPUT[31]) (CONSTANT-F

IV0 = 00000 || DIRECTION[0] || 0 … 0 || 101

SNOW 3G is initialised as described in document [2].

5.5.
Keystream Generation

Set L = ceiling(M / 4).

SNOW 3G is run as described in document [2] to produce the keystream consisting of the 32-bit words z1 … zL. The word produced first is z1, the next word z2 and so on.

The sequence of keystream bits is KS[0] … KS[8M-1], where KS[0] is the most significant and KS[31] is the least significant bit of z1, KS[32] is the most significant bit of z2 and so on.

5.6.
Output Octets

For each integer i with 0 ≤ i ≤ M-1 we set:

OUTPUT{i} = KS[8i] … KS[8i+7]

Observe that the most significant bit of each octet OUTPUT{i} is equal to KS[8i], whereas the least significant bit of each octet OUTPUT{i} is equal to KS[8i+7].

6.
INTEGRITY ALGORITHM GIA5

6.1.
 Introduction
The integrity algorithm GIA5 computes a Message Authentication Code (MAC) on an input message under an integrity key KI128. The message may be between 1 and 65536 octets long.

For ease of implementation the algorithm is based on the same stream cipher (SNOW 3G) [2] as is used by the confidentiality algorithm GEA5.

6.2.
Inputs and Outputs

The inputs to the algorithm are given in table 6.2.1, the output in table 6.2.2:

Table 6.2.1: GIA5 inputs
	Parameter
	Size (bits)
	Comment

	INPUT-I
	32
	Frame dependent input INPUT-I[0]…INPUT-I[31]

	M
	
	The length of MESSAGE in octets (1-65536)

	MESSAGE
	8M
	Input octet stream MESSAGE{0}….MESSAGE{M-1}

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	FRAMETYPE
	8
	Input value signifying the type of frame to be protected

	KI128
	128
	Integrity key KI128[0]…KI128[127]

Table 6.2.2: GIA5 output
	Parameter
	Size (bits)
	Comment

	MAC
	32
	Message authentication code MAC[0]…MAC[31]

6.3.
Components and Architecture

6.3.1.
SNOW 3G

The integrity function uses SNOW 3G that is specified in [2]. SNOW 3G is a word oriented stream cipher and generates from the key and an initialisation variable five 32-bit-words z1, z2, z3, z4 and z5.

6.3.2.
MULx

MULx maps 128 bits to 64 bits. Let V and c be 64-bit input values. Then MULx is defined:

If the leftmost (i.e. the most significant) bit of V equals 1, then

MULx(V, c) = (V <<64 1) (c,

else

MULx(V, c) = V <<64 1.

6.3.3.
MULxPOW

MULxPOW maps 128 bits and a positive integer i to 64 bits. Let V and c be 64-bit input values, then MULxPOW(V, i, c) is recursively defined:

If i equals 0, then

MULxPOW(V, i, c) = V,

else

MULxPOW(V, i, c) = MULx(MULxPOW(V, i – 1, c), c).

6.3.4.
MUL

MUL maps 192 bits to 64 bits. Let V, P and c be 64-bit input values.

Then the 64-bit output result of MUL(V, P, c) is computed as follows:

•
result = 0.

•
for i = 0 to 63 inclusive

o
if (P >>64 i) &64 0x01 equals 0x01, then

result = result (MULxPOW(V, i, c).

6.4.
Initialisation

This section defines how the keystream generator is initialised with the key and initialisation variables before the generation of keystream bits.

First FRAMETYPE is expanded to a 32-bit parameter CONSTANT-F by setting the 24 most significant bits to zero.

CONSTANT-F = 0 … 0 || FRAMETYPE

The following variables all have length 32 bits and are presented with the most significant bit on the left hand side and the least significant bit on the right hand side.

K3
=
KI128[0]

||
KI128[1]

||
KI128[2]

||
…

||
KI128[31]

K2
=
KI128[32]

||
KI128[33]

||
KI128[34]

||
…

||
KI128[63]

K1
=
KI128[64]

||
KI128[65]

||
KI128[66]

||
…

||
KI128[95]

K0
=
KI128[96]

||
KI128[97]

||
KI128[98]

||
…

||
KI128[127]

IV3
=
0 … 0
IV2
=
INPUT-I[0]
 ||
INPUT-I[1]
||
INPUT-I[2]
||
…

||
INPUT-I[31]

IV1
=
(DIRECTION[0] || 0 … 0) (CONSTANT-F

IV0
=
INPUT-I[0] || INPUT-I[1] || … || INPUT-I[15] || INPUT-I[16] (DIRECTION[0] || INPUT-I[17] || … || INPUT-I[28] || INPUT-I[29] (1 || INPUT-I[30] || INPUT-I[31] (1

SNOW 3G is initialised as described in document [2].

6.5.
Calculation

Set D = ceiling(M / 8) + 1.

SNOW 3G is run as described in document [2] in order to produce 5 keystream words z1, z2, z3, z4, z5.

Set

P = z1 || z2
and
Q = z3 || z4.

Let OTP[0], OTP[1], OTP[2], …, OTP[31] be bit-variables such that

z5 = OTP[0] || OTP[1] ||… || OTP[31],

i.e. OTP[0] is the most and OTP[31] the least significant bit of z5.

For 0 ≤ i ≤ D - 3 set

Si = MESSAGE{8i} || ... || MESSAGE{8i+7}.

so that each Si has length 64 bits, and the most significant bit of Si equals the most significant bit of the octet MESSAGE{8i} while the least significant bit of Si equals the least significant bit of the octet MESSAGE{8i+7}.

Set

SD-2 = MESSAGE{8(D-2)} || … || MESSAGE{M-1} || 0…0.

so that SD-2 has length 64 bits, and the most significant bit of SD-2 equals the most significant bit of the octet MESSAGE{8(D-2)} while the least significant bit of Si equals the least significant bit of the octet MESSAGE{M-1} if M / 8 is an integer, and equals zero otherwise.

Let LENGTH[0], LENGTH[1], …, LENGTH[63] be the bits of the 64-bit binary representation of the integer 8M, where LENGTH[0] is the most and LENGTH[63] is the least significant bit.

Set SD-1 = LENGTH[0] || LENGTH[1] || … || LENGTH[63].

Observe that the three least significant bits of SD-1 will always be zero.

Compute the function Eval_S:

•
Set the 64-bit variable EVAL = 0.

•
for i = 0 to D – 2 inclusive:

o
EVAL = Mul(EVAL (Si, P, 0x000000000000001b).

Set EVAL = EVAL (SD - 1
Now we multiply EVAL by Q:

EVAL = Mul(EVAL, Q, 0x000000000000001b).

Let EVAL = e0 || e1 || … || e63 with e0 the most and e63 the least significant bit.

For 0 ≤ i ≤ 31, set

MAC[i] = ei (OTP[i].

The bits e32, …, e63 are discarded.
Annex A (informative): Mathematical background of some operations of the GIA5 Algorithm
A.1.
The function EVAL_S

The first part (the function EVAL_M) of the calculations for the GIA5 algorithm corresponds to the evaluation of a polynomial at a secret point: From the bits and the length of MESSAGE a polynomial S(GF(264)[X] is defined. This polynomial is evaluated at the point P (GF(264) defined by z1 || z2.
This can be seen as follows:

Consider the Galois Field GF(264) where elements of the field are represented as polynomials over GF(2) modulo the irreducible polynomial x64 + x4 + x3 + x + 1.

Variables consisting of 64 bits can be mapped to this field by interpreting the bits as the coefficients of the corresponding polynomial.

For example for 0 ≤ i ≤ D-3 the variable

Si = MESSAGE{8i}||...|| MESSAGE{8i+7}.

is interpreted as

MESSAGE{8i}[0] x63+ MESSAGE{8i}[1] x62 + ... + MESSAGE{8i+7}[6] x + MESSAGE{8i+7}[7].

Construct the polynomial S of degree D-1 in GF(264)[X] as

S(X) = S0XD-1 + S1XD-2+ … + SD-2X + SD-1.

Evaluate the polynomial S at the point P, i.e. compute

S(P) = S0PD-1 + S1PD-2 + … + SD-2P + SD-1= (…(S0P + S1)P + S2)P + … + SD-2)P + SD-1.

This is done in the function Eval_S in section 6.5.

A.2.
The function MUL(V, P, c)

The function MUL(V, P, c) (see section 6.3.4) corresponds to a multiplication of V by P in GF(264). Here GF(264) is described as GF(2)(() where (is a root of the GF(2)[x] polynomial x64 + c0x63+ … + c62x +c63 and c = c0 || c1 || … || c63.
Annex B (informative): Implementation options for some operations of the GIA5 Algorithm

B.1
Overview

The function MUL (see section 6.3.4) can be implemented using table lookups. This might accelerate execution of the function EVAL_S, as for the evaluation of the polynomial only multiplication by a constant factor P is needed.

There are different possible sizes for the tables. Here we use 8 tables with 256 entries, but for example it is also possible to use 16 tables with 16 entries.

In order to execute MUL by table-lookups first Pre_Mul_P (see section B.2) is executed, which generates the tables. Then in MUL_P (see section B.3) the multiplication is performed by 8 table-lookups and an xor of the results.

Hence in 6.5 instead of EVAL = Mul(EVAL (Si, P, 0x1b) we can use EVAL = Mul_P(EVAL (Si).

B.2.
Procedure Pre_Mul_P

In order to be able to compute Mul_P (see section B.3) the procedure Pre_Mul_P is executed once before the first call of Mul_P.

Pre_Mul_P computes from the 64-bit input P eight tables PM[0], PM[1], …, PM[7]. Each of these tables contains 256 entries PM[j][0], PM[j][1], …, PM[j][255] with 64 bits.

For 0 ≤ j ≤ 7 and 0 ≤ X ≤ 255 the value PM[j][X] corresponds to X P x8j.

Let r be the 64-bit value 0x000000000000001b.

•
The tables are computed as follows:

PM[0][0] = PM[1][0] = PM[2][0] = PM[3][0] = PM[4][0] = PM[5][0] = PM[6][0] = PM[7][0] = 0.

•
PM[0][1] = P.

•
for i = 1 to 63 inclusive:

o
PM[i >>8 3][1 <<8 (i &8 0x07)] = PM[(i – 1) >>8 3][1 <<8 ((i – 1) &8 0x07)] <<64 1.

o
if the leftmost bit of PM[(i – 1) >>8 3][1 << ((i – 1) &8 0x07)] equals 1, then

PM[i >>8 3][1 <<8 (i &8 0x07)] = PM[i >>8 3][1 << (i &8 0x07)] (r.

•
for i = 0 to 7 inclusive

o
for j = 1 to 7 inclusive

-
for k = 1 to (1 <<8 j) – 1 inclusive

•
PM[i][(1 <<8 j) + k] = PM[i][1 <<8 j] (PM[i][k].

B.3.
Function Mul_P

The function Mul_P maps a 64-bit input X to a 64-bit output.

Let X = X0 || X1 || X2 || X3 || X4|| X5 || X6 || X7, with X0 the most and X7 the least significant byte.

Compute Mul_P(X) as

Mul_P(X) = PM[0][X7] (PM[1][X6] (PM[2][X5] (PM[3][X4] (PM[4][X3] (

 PM[5][X2] (PM[6][X1] (PM[7][X0].
Annex C (informative): Figures of the GEA5 and GIA5 Algorithms

[image: image3]
Figure C.1: GEA5 Keystream Generator

[image: image4]
Figure C.2: GIA5 Integrity function, part 1

[image: image5]
Figure C.3: GIA5 Integrity function, part 2

Annex D (informative): Simulation Program Listing
D.1
GEA5

Editor’s note: To be added

D.2
GIA5

Editor’s note: To be added

Annex E (informative): Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2016-04
	SA3#83
	
	-
	-
	-
	First Draft
	0.1.0

	2016-04
	SA3#83
	
	-
	-
	-
	Updated version sent to French Government for permission to publish
	0.2.0

	2016-05
	SA3#83
	
	-
	-
	-
	Updated titles after comments in SA3 #83
	0.2.1

	
	
	
	
	
	
	
	

INPUT�
||�
00000 || DIRECTION || 0 ... 0�
||�
INPUT (CONSTANT-F�
||�
00000 || DIRECTION || 0 ... 0 || 101�
�
IV3�
||�
IV2�
||�
IV1 �
||�
IV0�
�

SNOW 3G

KC128�
�
K3�
||�
K2�
||�
K1�
||�
K0�
�

z1�
||�
z2�
||�
...�
||�
zL�
�
KS[0] ... KS[31]�
||�
KS[32] ... KS[63]�
||�
...�
||�
KS[32L-32] ... KS[32L-1]�
�
OUTPUT{0} ||…|| OUTPUT{3}�
||�
OUTPUT{4} ||…|| OUTPUT{7}�
||�
...�
||�
OUTPUT{4L-4} ||…|| OUTPUT{M-1} || KS[8M] … KS[32L-1] if 4L > M�
�
�
�
�
�
�
�
�
�

0 … 0�
||�
INPUT-I�
||�
DIRECTION || 0 ... 0�(CONSTANT-F�
||�
0000000000000000 || DIRECTION || 000000000000101�(INPUT-I�
�
IV3�
||�
IV2�
||�
IV1�
||�
IV0�
�

SNOW 3G

KI128�
�
K3�
||�
K2�
||�
K1�
||�
K0�
�

z1�
||�
z2�
||�
z3�
||�
z4�
||�
z5�
�
 P�
||�
Q�
||�
OTP[0] ... OTP[31]�
�

z1 || z2�
�
P�
�

EVAL_S

MESSAGE || 0 ... 0�
�
S0 || ... || SD-2�
�

e0 || e1 || ... || e31

(left 32 bits)

MAC-I

(

MUL

z3 || z4�
�
Q�
�

(

LENGTH�
�
SD-1�
�

z5�
�
OTP[0] || ... || OTP[31]�
�

_953458302.unknown

