1

3GPP TSG SA WG3 (Security) Meeting #81
S3-152226
9-13 November 2015 Anaheim, CA

Source:
Alcatel-Lucent, Motorola Solutions, Inc.
Title:
Resolution of editor’s note in section 7.2.1.1 of 33.879
Document for:
Discussion and Approval

Agenda Item:
MCPTT

Work Item / Release: MCPTT/Rel-13

Abstract of the contribution: This pCR addresses the editor’s note in section 7.2.1.1 of 33.879.
1. Introduction
This pCR addresses the editor’s note in section 7.2.1.1 of TR 33.879 “Editor’s note: It is FFS whether an authorization code interception attack is applicable to MCPTT.”
2. Discussion

The OAuth 2.0 framework (RFC 6749) provides four different flows for an OAuth client (such as native apps and web based apps on the UE or the web server apps) to obtain an access token from the Authorization server. Among these flows, the Authorization code flow is the most secure flow as it involves authentication of both the User (aka resource owner) as well as the OAuth client in a two-step process.
2.1 No client authentication for native apps in OAuth
Authorization code flow is more suited for so called “Confidential clients” such as those hosted on a web server, as they can securely store client secrets needed for OAuth client authentication. When Authorization code flow is used for so called “Public clients” like native apps in the UE that can’t guarantee the security of the client secrets, OAuth specification recommends that only User authentication be performed and OAuth client authentication be skipped.
This exposes a security vulnerability that the original OAuth specification missed, especially when OAuth is used by native apps such as the MCPTT client.

2.2 Security risk
As described in the pCR, the mode of communication between the native app and the system browser, used to access the authorization server, is through a specific custom URI and the corresponding call-back that is registered by the native app as part of its initialization. Thus when OS sees a custom URI in the browser re-direct (HTTP/1.1 302 redirect) message sent by the Authorization server, it invokes the registered application as a call-back. This is how the authorization code present in the browser redirect message is forwarded to the native app.
Unfortunately, this path between the browser and the native app is unprotected and could be easily attacked by a malicious application, also a native application, in the UE. One of the most commonly seen attacks is when a malicious app in the UE masquerades as the “victim” native app and registers itself as the handler for the custom URI scheme.
The original Auth code flow in RFC 6749 did not have a mechanism to authenticate a “public” native app when the native app tries to exchange the “auth code” for an access token. So a malicious app could intercept the “auth code” and exchange it for access token successfully.
2.3 Client authentication based on RFC 7636

RFC 7636 - Proof key for Code exchange enhancement, provides a mechanism to authenticate public clients when OAuth Authorization code flow is used. The UE based “public” native client has to now demonstrate possession of a secret key that only the genuine client and the authorization server are aware of, in order to obtain the access token. A malicious app, even if it somehow manages to receive the authorization code, will not be able to provide this secret key to the authorization server to exchange the code for the access token. In other words, it will fail to authenticate itself with the authorization server, thus protecting the genuine native app from code interception attacks.
Since MCPTT Client is a native app on the UE, it is susceptible to a code intercept attack. We propose to use RFC 7636 based client authentication mechanism to protect MCPTT client from such attacks.
3. pCR to TR 33.879

************* Start Change ***
7.2.1.1 OpenID Connect Authorization Code flow using Proof Key for Code Exchange

OAuth 2.0 Authorization code flow [16] with additional security enhancements proposed by [15] is used as the OpenID Connect flow in the proposed solution.

The MCPTT Client native application in the UE is a “public client” incapable of maintaining the confidentiality of their credentials. When a public client utilizes the Authorization Code Grant to authenticate with the OIDC server, they are susceptible to the authorization code interception attack.

Once the user (i.e. the resource owner) authenticates, the OIDC server provides MCPTT Client with an authorization code through a browser redirect HTTP message. The client then sends the authorization code to the OIDC Server and gets an access token in return. The Redirection URI typically uses a custom URI to communicate with the native application.

The interface between the browser and the native app is based on callbacks (handlers). This path is unprotected and could be attacked by a malicious application (native application) in the UE. A malicious app can register itself as handler for the custom URI scheme and intercept the authorization code. To prevent these kinds of malicious apps from exchanging the “falsely obtained” code for an access token, code-challenge and code-verifier strings are used by the IdM Server to verify the MCPTT Client.
a)
The Client creates a code_verifier string and a code_challenge string derived from the code-verifier string.

b)
The client includes the code_challenge string when it requests an access token in the “Authorization Request” message.

c)
Subsequently, when it sends a message to exchange the authorization code for an access token, it includes the code_verifier string to the IdM Server, in addition to the authorization code. The code_verifier string is cryptographically associated with the code_challenge. Therefore the IdM Server can generate code_challenge on its own from the received code-verifier string, and compare it with the code_challenge provided by the client in the “Authorization Request”. If the values match, it proves that the client is legal. An access token is granted to the client.
************* End Change ***

4. Conclusion

We kindly ask SA3 to consider acceptance of this pCR.
3GPP

