

3GPP TSG SA WG3 (Security) Meeting #81
S3-152246
9-13 November 2015 Anaheim(US)

Source:
Vodafone
Title:
Cellular IoT - Protocols for End to Middle Security
Document for:
Discussion
Agenda Item:
8.4 - Battery Efficient Security for very low Throughput Machine Type Communication Devices
Work Item / Release:
13
Abstract of the contribution: This document discusses potential security protocols for using end-to-middle security keys, once they have been established using the mechanisms currently sketched in TR 33.863.
This document (which was already presented on a BEST conference call on 13th October 2015) discusses potential security protocols for using end-to-middle security keys, once they have been established using the mechanisms currently sketched in TR 33.863. The intention is that one or more solutions based on these discussions will later be included in TR 33.863.
The focus is on the established protocols IPsec and TLS, discussing how they could be simplified by removing the key and algorithm negotiation phases (IKE and TLS handshake respectively). The document also considers further ways in which they could be modified to enhance performance: e.g. to allow optimal header compression; rather than adapting the protocols to cut out or reduce field sizes directly, we try to configure them in such a way that subsequent header compression will be effective.
It looks like either IPsec or the TLS record layer could be adapted to provide efficient data transmission while avoiding a negotiation/handshake protocol. The residual overheads in each case are very similar: especially after compressing static or slowly changing headers, they would both add less than 20 bytes, mostly from the ICV or MAC.

In terms of ease of implementation, IPsec might be preferable for a number of reasons. However, we note from TR 23.720 that the Narrowband IoT solution will support “IP data, non-IP data and SMS” – so IPsec may not be applicable in all cases.
Cellular IoT - Protocols for End to Middle Security
1.
Introduction

This document discusses potential security protocols for using end-to-middle security keys, once they have been established using the mechanisms currently sketched in TR 33.863. The focus is on the established protocols IPsec and TLS, discussing how they could be simplified by removing the key and algorithm negotiation phases (IKE and TLS handshake respectively). The document also considers further ways in which they could be modified to enhance performance: e.g. to allow optimal header compression.

2.
IPsec

2.1 Security associations

IPsec (latest RFC 4301) is typically used in conjunction with IKE (latest RFC 5996) to negotiate “security associations” between IP end-points (one in each direction for bi-directional communications, and one for each security protocol, if several are supported: see below). The negotiated security association consists of: shared keys (between the end-points), agreed algorithms for encryption and/or integrity protection, a sequence number counter, an anti-replay window, a lifetime parameter, and a few other technical parameters.

The security association is referenced uniquely by a 32-bit Security Parameters Index (SPI), and the SPI must be included in each packet protected using IPsec. This means that IPsec is rather detachable from IKE, provided both end-points already implicitly know all this information (or it has been established by other means) and are able to reference the information by a common SPI.

2.2 Protocols and Modes

IPsec can be used in two modes: Transport or Tunnel. Transport mode involves adding a header and/or encrypting the payload of an IP packet between the two IP end-points. Tunnel mode embeds an entire IP packet – including further header – within the payload of another IP packet. The header of the tunnelled IP packet is usually encrypted and so not compressible, unless the compression/decompression happens at the same end-points as the IPsec security association.

IPsec includes two quite distinct security protocols: Authentication Header (which provides integrity), and Encapsulating Security Payload (which provides encryption, and optionally integrity as well with some algorithm choices). AH and ESP can be combined (and often are), though as noted above this requires separate security associations and SPIs for each of the two protocols.

1. Authentication Header (AH) is described by RFC 4302. This mode creates an additional IP header used to integrity protect the contents of the IP packet:

[image: image1.png][

012345
[—
| Next Header
[—
[—
[—

+

R e

1 2
67890123456789012345
Aottt
| Payload Len | RESERVED
Aottt

Security Parameters Index (SPI)
S P S
Sequence Number Field
bbb bbb bbb b be

Integrity Check Value-ICV (variable)

e T e T

o

3
0
.
.

.

.

.

b — — —

Figure 1. AH Format (source RFC 4302)

The SPI and Sequence Number are 32 bits. (An extended sequence number of 64 bits may also be used, but only the least significant 32 bits are transmitted). The integrity check value must be a multiple of 32 bits e.g. 32, 64, 96, 128. The integrity check always covers at least the IP payload and (in transport mode) parts of the rest of the IP header.

2. Encapsulating Security Payload (ESP) is described by RFC 4303. This mode creates an ESP Packet, starting immediately after the end of the regular IP header, and so replacing the regular payload of an IP packet:

As for AH, the SPI and Sequence Number are 32 bits (again an extended sequence number of 64 bits may be used, but it is truncated to 32 bits). The integrity check value ICV is optional; if present, it must be a multiple of 32 bits, and must cover the SPI and Sequence Number (which are not encrypted) as well as the Payload Data.

ESP can be used in “encryption-only” mode (with a NULL integrity algorithm, though see Degabriele and Patersson for why this is a bad idea https://eprint.iacr.org/2007/125.pdf) or in “integrity-only” mode (with a NULL encryption algorithm). When ESP delivers both encryption and integrity protection, then they can be applied separately (in that order), or they can be delivered by a combined AEAD algorithm.

[image: image2.png]©

w
IS
w
o

78
SRR T

Secu
SRR T
SRR T

SRR T

ot

T ——
Integrity

SRR T

1 2
90123456789012345678
bbb bbb bbb bbb btk
rity Parameters Index (SPI)
S
Sequence Number
U
1V (optional)
bt bbb bbb bbb bbbtk
Rest of Payload Data (variable)

©

bbb bbb bbb bbbtk
TFC Padding * (optional, variable)
PP
| Padding (0-255 bytes)
TR P
| Pad Length | Next Header
U
Check Value-ICV (variable)

S T T e S LTS

3

01
4t
4t
S

e |

~

|

e |
v
R
s

4t

-t

Qo< BT

Figure 2. Format of ESP Packet, including Substructure of Payload Data (source RFC 4303)

Using an AEAD algorithm like AES-GCM (RFC 4106) or AES-CCM (RFC4309) could allow significant efficiency gains over separately encrypting and then integrity protecting. The AEAD algorithms also minimize padding (there is no need to pad up to the length of an AES block, and no risk of padding oracle attacks). But the length of ICV might be an issue: RFC 4106 and RFC 4309 both specify that the ICV must be at least 64 bits, and RFC 7321 strongly recommends (SHOULD+) that the ICV be a full 128 bits. We should consult SAGE to see whether the ICV might be truncated to 32 bits (consistent with other 3GPP MAC lengths), and what would be the security implications.

AEAD algorithms also require an 8 byte IV (technically a nonce value: e.g. an ascending counter) and an agreed random “Salt” value (32 bits for GCM, 24 bits for CCM). The salt is not transmitted, but must be agreed by both end-points as part of the security association. Observe that the IV is not encrypted, and in cases where the IV is a simple incremental counter, it could be greatly compressed during transmission.

Turning to separated algorithms, there is only one encryption algorithm mandated in RFC 7321 – this is AES-CBC, described in full in RFC 3602. However, it requires an IV of 16 bytes (the length of an AES block) and RFC 3602 further explains the need for randomly-generated IVs. A random 16 byte IV per packet will not be compressible.

There is only one mandatory integrity algorithm in RFC 7321 (HMAC-SHA1-96): this relies on SHA1 and delivers a 96 bit ICV. AES-GMAC is also strongly recommended (SHOULD+) as an integrity-only solution. AES-GMAC is treated within IPsec as a combined mode (very like AES-GCM) but with the encryption switched off.

2.3 Considerations for Cellular IoT

Since one of the main goals of end-to-middle security is to minimize data overhead (especially data transmitted by the device), we now consider the different modes and protocols in terms of bytes of overhead. We also check how much of this overhead could be removed by data compression.

Transport versus Tunnel. Tunnel mode involves embedding “inner” IP packets (including headers) within the payload of the “outer” IP packets. The inner IP headers cannot be compressed and decompressed over the visited network (Device to SGSN or eNodeB) unless the outer IP payload is unencrypted. These inner headers could be compressed if the end-point for de-compression is moved to the HSE, and the compression client is integrated at the device with the IPsec client. However, on balance transport mode looks preferable over tunnel mode here.

AH or ESP: AH only provides data integrity to packets. To support encryption, AH would need to be combined with ESP. However, as we have seen, this requires additional SAs, so that both the header and payload must include an SPI (different values) and a Sequence Number (again different values, unless synchronization is perfect). When using AH, decisions would also need to be made how much of the IP header is included in the ICV, and the ICV would not be compressible. Further, as we have seen, ESP allows simultaneous encryption and integrity or even integrity-only, and the entire IP header could be compressed. This suggests that ESP is in general preferable.

Separate Encryption/Integrity Protection or Combined Algorithm: As mentioned above, a combined AEAD algorithm is likely to have effiiciency advantages in execution, and could use a smaller and more compressible IV (an 8 byte counter rather than 16 byte random value). Further, what integrityalgorithm would we specify if we required separated encryption and integrity protection? Requiring something based on SHA1 doesn’t look very future proof, whereas AES-GMAC (the only obvious alternative) is about as complicated as AES-GCM. Further, encryption-only solutions are known to be unsafe for IPsec (see above) and requiring AES-GCM or AES-CCM is one way to avoid such unsafe solutions being implemented for CIoT. To quote Degabriele and Paterson “the placement of warnings to implementors in the standards does not prevent implementors from making weak configurations available to end-users … Nor do warnings in RFCs prevent end-users from selecting such weak configurations”.

Total Packet Expansion: The SPI and Sequence Number add 4 bytes each; the Pad Length, and Next Header fields add 1 byte each. Using a combined algorithm, the Padding adds 0-3 bytes, the IV adds 8 bytes, and the ICV adds 8-16 bytes (or 4 bytes if SAGE endorse truncation). This is a total expansion of 22-37 bytes. However note that all of these fields except for the ICV are either constant from packet to packet, or change incrementally, so they will be highly compressible. Only the ICV (between 4 and 16 bytes) creates an incompressible overhead.
Further Optimisations: ESP specifies encryption for the whole of the “Payload Data” (after the IV); this would typically include protocol-specific headers (TCP/UDP) and application-specific headers (http or COAP). By encrypting all of these headers (which are largely static between packets, and may not be considered very confidential), an opportunity to efficiently compress data may be lost.

However, such encryption is not actually required within AEAD: the encryption could easily be started any number of bytes into the payload (the IV length and hence encryption start-point is variable anyway). All unencrypted headers would still be integrity protected by the ICV. Such a mechanism would involve a departure from ESP as defined by RFCs; however, provided both end-points know exactly how many bytes of header to leave unencrypted (e.g. because this parameter is part of the Security Association) no interoperability problems would be encountered.

Diet-ESP?: An alternative to leaving some protocol headers unencrypted (so they can be easily compressed/ decompressed by other transmission software) is to compress all headers (and as much of the data payload as possible) before feeding them into the IPsec implementation. This is the principle behind ROHC over IPsec and Diet-ESP. As previously noted, this approach could provide an efficient implementation, but it requires the following:

i) The compression client on the device must be tightly integrated with the IPsec client, and

ii) The decompression end-point must be moved from the visited network (SGSN or eNodeB) to the HSE
Diet-ESP originally proposed a number of security compromises, like reducing the size of the SPI and ICV (down to as few as 8 bits!), or removing authentication entirely (by negotiating NULL). Removing the Sequence Number (SN) would leave the device and HSE vulnerable to replay attacks. See: https://tools.ietf.org/html/draft-mglt-dice-diet-esp-00. However, Diet-ESP is still evolving, so these compromises may not be needed/endorsed in future versions.

2.4 Summary

A combination of Transport Mode with ESP and an AEAD algorithm looks best to meet requirements for efficient data transmission. Skipping a few bytes of IP Payload data before encrypting would allow further data compression. Diet-ESP could be even more efficient, if the impacts on end-points and security compromises are deemed acceptable.

To avoid explicit IKE negotiation, SA3 should specify a few limited “suites” for IPsec (known sets of algorithms and other parameters). The obvious suites are 128 bit and 256 bit AES-GCM, AES-CCM and AES-GMAC (for integrity only); these may include a truncated ICV (provided SAGE endorses). The HSE could communicate the intended suite and parameters to the Device End-point using the PCO channel, or alternatively via the SPI on an initial protected packet. A few bits of SPI could be reserved to indicate which suite is to be used and which E2M keyset is to be used (where several have been derived and are not yet expired). Further bits could be reserved to indicate the number of bytes of Payload Data that will be skipped before encryption starts. The relevant bits of SPI should be input into the E2M key derivation processs. Random “Salt” values will also need to be derived, to be used alongside the keys.
3.
TLS

3.1 TLS Protocols
TLS (latest vesrsion 1.2 defined by RFC 5246) consists of several different protocols. An underlying record protocol is used in four specific further protocols: the handshake protocol, the alert protocol, the changecipher spec protocol, and the application data protocol. These are implemented together in TLS tookits, and the handshake protocol is always in practice used to set up the equivalent of an IPsec Security Association (an agreed set of keys, algorithms etc.) However it is worth investigating whether the “application data protocol” – which is the one used actually to secure data in e.g. https sessions – could be detached from the handshake protocol.

3.2 Record Protocol

The basic TLS record structure is shown below:
[image: image3.png]+ Byte +0. Byte +1 Byte +2 Byte +3

Bytes. Version Length
1.4 (Major) (Minor) (oits 15..8) (bits 7.0)

Bytes

Protocol message(s)
i) ge(s)

Bytes

m..(p-1) MAC (optional)

Bytes

Padding (block ciphers oni
P-(9-1) g (! ipt ly)

Figure 3. TLS record structure (source Wikipedia)

The maximum record size is 16 Kbytes, although the end-points can negotiate a smaller size if necessary (down to 512 bytes for constrained devices). Each record has a 5 byte header, a MAC (which may be up to 32 bytes for TLS 1.2) and padding up to the block-size of a block cipher if used (up to 15 bytes). The total maximum overhead is therefore around 52 bytes, though this can be reduced to around 20 bytes by appropriate cipher-suite selection (see below). TCP and IP headers must also be added (~20 bytes each), though since these are unencrypted, they can be considered compressible.

Note in particular that there is no equivalent of the IPsec SPI included in the record: the peers are assumed to know implictly (after the handshake) what keys and algorithms they will be using. Also note that there is no explicit sequence number included in the record; the peers are expected to keep track of how many records have been sent and received. By contrast, DTLS (latest RFC 4347) does include an explicit 64 bit sequence number, located immediately between the version and length fields. This creates an additional 64 bits of overhead, though it is compressible.

3.3 Preferred Cipher Suites

TLS has been through several versions (1.0, 1.1 and 1.2, following SSL 1.0-3.0) and supports a large number of ciphersuites (different combinations of encryption and integrity algorithms, key-lengths, padding methods etc.) However, almost all the ciphersuites introduced up to TLS 1.1 are now considered to have security issues: either the keys are too short, a vulnerable stream cipher is used (RC4) or the order of authentication and encryption is problematic and allows various padding oracle attacks. The only standard ciphersuites without known problems are the AEAD ciphersuites AES GCM and AES CCM (which were introduced in TLS 1.2). AES in CBC mode can be used securely in TLS 1.1 and TLS 1.2 but the library must be carefully written to avoid timing attacks (“Lucky Thirteen”). Based on this experience, it is expected that TLS 1.3 will include only AEAD ciphers. The AEAD ciphers also are likely to be most efficient for CIoT usage e.g. they minimize overhead by avoiding the need for padding data.

AES GCM: RFC 5288 defines use of AES GCM for TLS. Each supported ciphersuite uses a 128-bit MAC, and this cannot be truncated. A 12 byte "nonce" is also required, structured like an IPsec GCM nonce:
 struct {

 opaque salt[4];

 opaque nonce_explicit[8];

 } GCMNonce;

The salt is "implicit" and is not sent in the packet: instead, it is generated as part of the handshake process. The nonce_explicit is the "explicit" part of the nonce: it is carried in each TLS record. The nonce_explicit MAY be the 64-bit sequence number, provided the implementation can ensure the sequence number is never re-used.

AES CCM: RFC 6655 defines use of AES CCM for TLS. The supported ciphersuites use either a 128-bit MAC or a 64 bit MAC. A 12 byte "nonce" is again also required, and is structured exactly like a GCM nonce.
Integrity Only: TLS can be used in null encryption mode (integrity only), although this is rarely deployed, and NULL encryption ciphersuites are often disabled by default. The strongest integrity-only ciphersuites suites are of the form *NULL_SHA256; they use an HMAC based on SHA-256. The full 256 bits of output are used, unless the truncated_hmac extension has been negotiated; then the HMAC is reduced to 80 bits.
3.4 Considerations for Cellular IoT
Total Packet Expansion: It will be seen that AES-GCM requires 5 bytes (header) + 8 bytes (explicit nonce) + 16 bytes (MAC) = 29 bytes, whereas AES-CCM requires 5 bytes (header) + 8 bytes (explicit nonce) + 8/16 bytes (MAC) = 21/29 bytes. And NULL_SHA256 requires 5 bytes (header) + 10/32 bytes (MAC) = 15/37 bytes. So total overheads are comparable to those with IPsec. If the explicit nonce is a sequential counter, those 8 bytes wil be compressible,
Communicating the Security Association: One issue already identified is that no equivalent of the SPI is included within the application data protocol. It may be possible to include an SPI equivalent by re-purposing part of the nonce value (or re-purposing part of the 64 bit sequence number which is used in DTLS). Both of these solutions look ad hoc. Alternatively, the intended security paramaters would need to be established by signalling outside the record protocol e.g. via the PCO channel, or by modifying one of the additional TLS protocols (e.g. the “changecipherspec” protocol).

Further Optimisations: As for IPsec, we could ask SAGE whether the MAC lengths might be truncated.

3.5 Summary
A combination of the TLS or DTLS application data protocol with an AEAD algorithm would meet requirements for efficient data transmission. In particular, any TCP (or UDP) and IP headers would be entirely unencrypted and so would be available for compression, and the incompressible overhead from the record protocol itself is quite small: around 20 bytes. It is not clear that any further headers could be dropped from encryption and so compressed: TLS provides no obvious way to avoid encrypting http headers (say) while still including them within the scope of the MAC.

To avoid explicit handshake, SA3 could specifya few limited “suites” (known sets of algorithms and other parameters). The obvious suites are AES-128-GCM, AES-128-CCM, AES-256-GCM, AES-256-CCM and NULL_SHA256 (for integrity only): these may include a truncated ICV (provided SAGE endorses).

The HSE could communicate the intended suite to the Device End-point using the PCO channel, or possibly by modifying the changecipherspec protocol. The relevant bits of data should be input into the E2M key derivation processs. Random “Salt” values will also need to be derived, to be used alongside the keys.
4.
Conclusions

It looks like either IPsec or the TLS record layer could be adapted to provide efficient data transmission while avoiding a negotiation/handshake protocol. The residual overheads in each case are very similar: especially after compressing static or slowly changing headers, they would both add less than 20 bytes, mostly from the ICV or MAC.

In terms of ease of implementation, IPsec might be preferable because it is easily separable from IKE, whereas existing toolkits do not separate the TLS application data protocol from the other protocols. Also, IPsec provides a SPI for explicitly indicating the security association being used, something which is harder to reproduce in TLS. Finally, TLS does not provide explicit sequence numbers, and so we would need to make a decision about whether to include them explicitly (as for DTLS) while hoping that in practice they can be mostly compressed away.
