3GPP TSG-SA WG3 Meeting #80
S3-151911
Tallinn, Estonia, 24 – 28 August 2015

revision of S3-15abcd

Source:
Ericsson
Title:
Making the processing of confidentiality protected ProSe Codes more efficient: new key issue and a solution
Document for:
Approval
Agenda Item:
8.5
Work Item / Release:
extProSe/Rel-13
Abstract of the contribution: This contribution proposes a new key issue and a solution for making the processing of scrambled ProSe codes more efficient. The new key issue is related to potential new Denial of Service attacks in PC5 interface if ProSe Codes are scrambled. The solution proposes that PC5 interface is enhanced by adding a hint of the scrambling key. One potential method of constructing the key hint is described.
1 Introduction
This contribution proposes a new solution for making the decryption of ProSe codes more efficient. TR 33.833 currently includes solutions #8.3.1, #8.3.10 and #8.3.11 propose that the ProSe code in Restricted Discovery should be protected against tracking. This essentially means that the ProSe code needs to be protected for confidentiality (i.e. scrambling or encryption). However, since the message in PC5 interface does not include key identifier, the processing of the confidentiality protected ProSe codes in the monitoring/discoverer side becomes exhaustive. A key identifier cannot be included because it would just move the problem from the tracking of a ProSe code to the tracking of the key identifier. This solution proposes that PC5 interface is enhanced by adding a hint of the scrambling key. In this way, the process of undoing the scrambling becomes more efficient.
2 DoS attack with confidentiality protected ProSe codes
In Rel-12 where the ProSe Code is not confidentiality protected, the monitoring UE can use the Discovery Filter to filter out majority of the ProSe Codes before taking any further actions for verifying that the message was genuine (i.e. verify the MIC). Once the ProSe Codes becomes confidentiality protected, the use of Discovery Filters prior to the use of cryptographic operations becomes impossible. This means that monitoring/discoveree/discoverer UE needs to process all received messages from the PC5 interface before knowing if they are relevant for the UE. Some processing is needed also in Rel-12, however, this is less exhaustive.
Generally speaking, confidentiality protected PC5 interface is vulnerable to DoS attack because anyone can start generating random PC5 messages forcing anyone listening this interface to process the generated message. This has been accepted in some degree in Rel-12, however, confidentiality protection of ProSe Codes makes the situation worse:

· Undoing the confidentiality protection adds mandatory processing operations to be performed for all Restricted Discovery messages over the PC5 before the Discovery Filter can be used.

· If the receiving UE is discovering more than one ProSe Code, and consequently holding more than one confidentiality key, it needs to try all of these keys to messages that could potentially originate from an attacker.
In other words, confidentiality protected ProSe Codes opens a new type of Denial of Service attack on the PC5 interface. Table 1 demonstrates the attack. For example, if the attacker generates 10.000 random PC5 messages, the Release 13 UEs need to perform 10.000, 30.000 or 50.000 decryption operations depending how many ProSe Codes they follow, and how many different decryption keys they have. Note that the situation in Table 1 does not need to be an attack because the situation is the same in the case when none of the messages are related to the receiving UE (i.e. no match).
	Attacker generate random encrypted ProSe Codes
	Rel-12
	Rel-13

1 decryption key
	Rel-13

3 decryption keys
	Rel-13

5 decryption keys

	100 fake PC5 messages
	0
	100
	300
	500

	1.000 fake PC5 messages
	0
	1.000
	3.000
	5.000

	10.000 fake PC5 messages
	0
	10.000
	30.000
	50.000

Table 1: DoS attack in the existing PC5 interface; the amount of needed operations to undo the confidentiality protection
For the rest of this paper, we assume that the type of confidentiality protection applied for PC5 interface is what is called as “scrambling” in TR 33.833. They way of processing the scrambled messages in the receiving UE side is by undoing the scrambling before the Mask in the Discovery Filter can be applied.

Note that there is also another way of processing the protected ProSe Codes in the receiving UE, however, also this one has efficiency problems. The receiving UE can scramble the ProSe Code from the Discovery Filter with a fresh key stream, and compare the scrambled code with the code received from PC5 interface (rather than undoing the scrambling of all messages from PC5, and comparing the cleartext formats of the codes). Also in this case, every time the UE see scrambled Restricted Discovery message in PC5 message it is forced to create a fresh scrambling key stream and perform the XOR operation before it can decide if this message was relevant for it. Also this could be an attack scenario when someone is simply generating random messages to PC5 interface, or it could be a non-attack scenario when someone is sending real messages to PC5. Theoretically speaking, if the PC5 interface is crowded, and a new message is sent every second, 24/7, the UE needs to count fresh encryption masks/key streams every second, and encrypt the ProSe Code from the Discovery Filter also every second. This must be done even without no-one relevant in proximity. Table 2 present the theoretical maximum of hash and XOR operations.
[image: image1.emf]1 second 2 6 10 400

1 hour 7200 21600 36000 1440000

1 day 172800 518400 864000 34560000

1 week 1209600 3628800 6048000 241920000

4 weeks (month) 4838400 14515200 24192000 967680000

1 year 63072000 189216000 315360000 12614400000

Number of hash and bitwise XOR operations

time

1 encryption key

3 encryption key

5 encryption keys

200 encryption

keys

Table 2: Theoretical maximum of hash (fresh key stream) and bitwise XOR (encryption) operations if new PC5 message is sent every second

3 Background for the solution proposal

It is proposed that PC5 message is enhanced with 6 bits long hint of scrambling key (see Figure 1). The hint is similar to a key identifier; however, it does not identify the key but only gives a hint which key to try. The reason why key identifier cannot be used is because it would make it possible to track the UE which was the original reason of introducing the confidentiality protection in the first place.
[image: image2.png]ProSe Application Code = 184 bits

<€

>

Message Type
(8 bits)

PLMN ID

(3-23 bits)

Temp ID (Not specifiedin 3GPP)
(184 — PLMN ID bits)

MiIC
(32 bits)

Hint
(6 bits)

Figure 1: Enhanced PC5 message with hint of scrambling key
The hint should be long enough in order to useful (i.e. the receiver can ignore the messages that have unknown hint), but also a short enough in order to avoid tracking (i.e. if the number of UEs is low, the attacker may be able to track based on the hint). Table 3 demonstrates the relationship between the length of the hint in bits, and how many PC5 messages can be ignored if only one decryption key was in use. It can be seen from the table that even with 6 bits long hint, the UE could filter out 98% of the PC5 messages if it has only one scrambling key. It is proposed that the 6 bits length is chosen.
[image: image3.emf]n

n

2

1/n

2

*100 (1-1/n

2

)*100

1 2 50,00 % 50,00 %

2 4 25,00 % 75,00 %

3 8 12,50 % 87,50 %

4 16 6,25 % 93,75 %

5 32 3,13 % 96,88 %

6 64 1,56 % 98,44 %

7 128 0,78 % 99,22 %

8 256 0,39 % 99,61 %

Table 3: The number of PC5 messages that can be filtered out based on different lengths of key hints
Assuming that each key hint points to even number of scrambling keys (even if generated by an attacker), table 4 shows what happens to the possibility of doing the Denial of Service attack. It can be seen from the table that the situation is actually much better than in Release-12 where the receiving UE has not key identifier, and still needs to apply the binary AND operation for all of the received ProSe Codes with the Discovery Filter.
	Attacker generate random encrypted ProSe Codes
	Rel-12
	Rel-13

1 scrambling key
	Rel-13

3 scrambling keys
	Rel-13

5 scrambling keys

	100 fake PC5 messages
	0+100
	6+6
	6+6
	6+6

	1.000 fake PC5 messages
	0+1.000
	63+63
	63+63
	63+63

	10.000 fake PC5 messages
	0+10.000
	625+625
	625+625
	625+625

Table 4: Evenly distributed DoS attack in the enhanced PC5 interface; the amount of needed unscrambling and match operations (bitwise XORs + bitwise ANDs)
Even with the key hint, the attacker can still target the attack to one hint of the key only (Table 5). However, the attack is isolated to certain UEs, and not affecting that much on others. Furthermore, even for the targeted UE the situation is still better because the UE does not need to try all keys to the fake message but only the one that has the hint. For example, the attack towards a UE with five scrambling key and 10.000 fake PC5 messages drops down from 100.000 (current situation) to 20.000 (situation with the proposed solution) operations in the receiving UE side.
	Attacker generate random encrypted ProSe Codes
	Rel-12
	Rel-13

1 scrambling key
	Rel-13

3 scrambling keys
	Rel-13

5 scrambling keys

	100 fake PC5 messages
	0+100
	100+100
	100+100
	100+100

	1.000 fake PC5 messages
	0+1.000
	1.000+1.000
	1.000+1.000
	1.000+1.000

	10.000 fake PC5 messages
	0+10.000
	10.000+10.000
	10.000+10.000
	10.000+10.000

Table 5: Targeted DoS attack in the enhanced PC5 interface; the amount of needed unscrambling and match operations (bitwise XORs + bitwise ANDs)

4 pCR

BEGIN CHANGES

7.3.1
Key Issue #7.3.1: Restricted ProSe Direct Discovery (Model A and B)

7.3.1.1
Key issue details

SA2 describe how restricted direct discovery will work in TR 23.713[33] for both model A and model B. This work builds on top of the open discovery flows from Rel-12. In Open discovery, there is no explicit permission that is needed from the UE being discovered, while in restricted discovery, explicit permission from the UE that is being discovered is required. Model A consists of a monitoring UE discovering an announcing UE by listening for discovery messages containing the correct ProSe Code. The Model B discovery allows the direct exchange of ProSe Query Code and ProSe Response Code between Discoverer UE and Discoveree UE, without requiring signalling to the network in between.

The solution in clause 5.3 of TR 23.713 [33] supports Restricted Discovery with application-controlled extension. In the solution, the ProSe Code contains two parts:

ProSe Code Prefix: In Discovery with application-controlled extension, a part of the ProSe Code that is assigned by the ProSe Function.

ProSe Code Suffix: In Discovery with application-controlled extension, a part of the ProSe Code that is under the control of the announcing application. The ProSe Code Suffix represents application specific information pertaining to the application that is indicated in the Restricted ProSe App User ID.

7.3.1.2
Security threats

In direct discovery, a ProSe-enabled UE broadcasts an identity that can be received by other Pro-enabled UEs that are in proximity. The receiving UE can analyze received identities in order to decide if any UEs of interest to discover are in its proximity.

As noted above there are two types of discovery, open and restricted. With open discovery, there is no requirement for the one UE to be authorized to discover the other UE. This means that the identity that is broadcast for this type of discovery is assumed to be knowable to all UEs (this is true whether the actual identity is broadcast or some well known mapping of the identity is broadcast).

With restricted discovery, a UE needs to be authorized to be able to discover a particular UE. In particular the broadcast identities should prevent the discovery of a UE without their explicit permission. This threat also extends to the ability to track such a broadcasting UE even if it is not known who the UE belongs to based on the broadcast identity. Clearly anyone with the permission to discover the UE would be able to track them, as this is effectively part of the permission to discover the UE.

Similar threats as in the above paragraph also apply to the restricted discovery messages sent over the air by the discoverer UE, as in the case that the ProSe Query Code is expected to be responded to by a relatively small set of UEs, then a response to such a discovery messages could lead to information being leaked about a responding user.

Another security threat is that of unauthorized announcements (e.g., impersonation and replay threats). This may cause a receiver to believe that the other UE is in proximity when it currently isn't, and hence take whatever action discovering that UE would involve. This threat also applies to the initial discovery message sent by the discoverer UE in model B discovery. In this latter case, there is no value providing individual keys to discoverer UEs to protect this message, as it only requires one of this key compromised to be able to force the discoveree UE to send its broadcast. Furthermore the use of a Match Report will not provide any additional protection for the ProSe Query Code against compromised Discoverer UEs and in fact causes more resources to be used as the Discoveree UE needs to contact the network. Similarly a compromised Discoveree UE would enable an attacker to form a correct ProSe Query Code. Using Match Reports to try to protect against this would use more resources than just responding with a ProSe Response Code that would not be understood by non-Discoverer UE at any rate. A UE that is neither a Discoverer nor a Discoveree UE should not have the information to form a message that the attacked Discoveree UE believes contains its ProSe Query Code. In summary, there is no value in the Discoveree UE sending Match Reports containing ProSe Query Codes.

An attacker could eavesdrop on the application-controlled extensions part of the ProSe Code while it is transmitted over the air. Similarly such data could be modified by a man-in-the-middle.

7.3.1.3
Security requirements

ProSe Restricted discovery shall allow a UE to discover only other UEs which it is currently authorized to discover. That is, the identities announced on the air interface shall be able to be protected from being understood by currently unauthorized UEs.

The possibility of tracking of UEs based on the content of their discovery messages over time should be minimized.

The system shall support the prevention of impersonation attacks.

The possibility of replay attacks on discovery messages sent over the air interface should be minimized.

The system should support integrity protection and confidentiality protection of Restricted Discovery ProSe Codes.

NOTE: Any structure present in the ProSe Code before any security processing should be preserved to enable checking for matches. Preserving the structure needs to be done in a way that does not affect the security.
Confidentiality protection of Restricted Discovery ProSe Codes should minimize the risk of new Denial of Service attacks in the PC5 interface.
NOTE: These requirements apply to both model A and model B restricted discovery.

END OF CHANGES

BEGIN CHANGES

8.3.X
Solution #8.1.X: Hint of scrambling key
8.3.X.1
General

This solution addresses the requirements in key issue #7.3.1: Restricted ProSe Direct Discovery (Model A and B). The solution is a partial solution related to scrambling, and intends to make the verification of confidentiality protected ProSe Codes more efficient.

8.3.X.2
Solution description

It is proposed that PC5 message is enhanced with a 6 bits long hint of scrambling key (see Figure 8.3.x.1-1). The hint is similar to key identifier; however, it does not identify the key but only gives a hint which key to try. The reason why key identifier cannot be used is because it would make it possible to track the UE which was the original reason of introducing the scrambling in the first place.

[image: image4.png]ProSe Application Code = 184 bits

<€

>

Message Type
(8 bits)

PLMN ID

(3-23 bits)

Temp ID (Not specifiedin 3GPP)
(184 — PLMN ID bits)

MiIC
(32 bits)

Hint
(6 bits)

Figure 8.3.x.1-1: Enhanced PC5 message with hint of scrambling key

When a sending UE receives the scrambling key, it counts a static hint related to that key and stores it. Before sending the confidentiality protected message over the PC5 interface, the UE adds the hint to the message.

When a UE receives a message from the PC5 interface, it first checks the hint of scrambling key. If it does not have an scrambling key that has the same key hint, it does not further process the message but ignores it. If the hint matches to one of the hints of the scrambling keys, the UE proceeds in the verification of the ProSe Code. The UE may have more than one scrambling key that have the same key hint, and consequently it needs to try all of them for the received message.

The key hint is calculated using a one-way hash function over the scrambling key, and a static string and choosing the six least significant bits from the result as the key hint:

For Restricted Discovery Model A, the key hint is:

· Key_hint_C = one-way hash(scrambling key, “prosecode”)

For Restricted Discovery Model B, the key hints are:

· Key_hint_Q = one-way hash(scrambling key, “querycode”)

· Key_hint_R = one-way hash(scrambling key, “responsecode”)

END OF CHANGES
