3GPP TSG-SA WG3 Meeting #80
S3-151888
Tallinn, Estonia, 24 – 28 August 2015

revision of S3-15abcd

Source:
Ericsson, Nokia Networks
Title:
Existing and evolving TLS optimizations
Document for:
Information
Agenda Item:
8.7.2
Work Item / Release:
CIoT/BEST_MTC_sec/Rel-13
Abstract of the contribution: In this paper, we discuss existing and evolving TLS optimizations that may be useful in BEST_MTC_sec context. We propose that SA3 should further study if it is possible to leave the DTLS session open for longer period of time, and omit full handshake, or resume DTLS session instead of making a full handshake. There is also a new 0-roundtrip TLS handshake procedure under development in IETF that could be of interest of BEST_MTC_sec study.
1 Introduction
SA3 is currently studying UE to Enterprise security for Cellular IoT in BEST_MTC_sec study. The current working assumption seems to lean to a conclusion that existing IETF protocols would not be battery efficient enough in order to guarantee the ten years lifetime expectation for the extremely constrained devices. This may be true in the case of extremely constrained devices, however, there may be many other Cellular IoT use cases that would be able to cope better with the IETF protocols, e.g. some variant of streamlined (D)TLS. Furthermore, the chip manufacturers, and device developers may be more familiar with IETF protocols when it comes to application layer security which gives a good reason also for SA3 to study what is happening in IETF. In this paper, we review some of the existing IETF standards and activities related to Cellular IoT. Some of these activities may be of the interest of BEST_MTC_sec.
2 Proposal

We propose that the attached pCR is added as an annex to BEST_MTC_sec study. This same annex could collect information about evolving security standardization efforts in other standards organizations. The text we are proposing is related to (D)TLS optimizations in constrained environments.

Based on this review, we would like to conclude:
· It is possible to leave the DTLS session open for longer period of time, and omit full handshake.
· It is possible to resume DTLS session instead of making a full handshake.
· It may be possible in the near future to use the new 0-roundtrip TLS handshake procedure in constrained environments. This is currently developed under TLS version 1.3.

3 pCR

BEGIN CHANGES

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 41.001: "GSM Release specifications".

[3]
3GPP TR 21 912 (V3.1.0): "Example 2, using fixed text".
[a]
IETF Transport Layer Security (tls) Working Group, Charter, http://datatracker.ietf.org/wg/tls/charter/

[b]
RFC 7252 “The Constrained Application Protocol (CoAP)”

[c]
I-D draft-ypoeluev-tls-m2mcertificate-00 “Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) Authentication Using M2M Certificate”

[d]
I-D draft-ietf-tls-cached-info-19 “Transport Layer Security (TLS) Cached Information Extension”

[e]
I-D draft-ietf-tls-tls13-05 “The Transport Layer Security (TLS) Protocol Version 1.3”

[f]
RFC 5246 “The Transport Layer Security (TLS) Protocol Version 1.2”

[g]
I-D draft-ietf-dice-profile-13” A TLS/DTLS Profile for the Internet of Things”
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

It is preferred that the reference to 21.905 be the first in the list.

END OF CHANGES

BEGIN CHANGES

Annex <X>:
Review of security standardization efforts in other SDOs
Annex X collects information on security standardization efforts in other standards organizations (SDOs) that are relevant for this study. This body of work includes security procedures that are optimized for constrained environments.
X.1
(D)TLS optimization efforts in IETF
X.1.1 Background

CoAP is the most promising IoT protocol that also GERAN is expected to be used with Cellular IoT. CoAP was developed for constrained environments, and for this reason, it may seem strange that IETF choose DTLS as the primary security mechanism for CoAP. It is widely known that TLS is heavy in terms of negotiation roundtrips and amount of data sent during the negotiation. However, it seems that IETF wanted to re-use security mechanism that has already been proven, and widely deployed. By making this decision, IETF seemed to make also a commitment to solve the efficiency problems of DTLS to better fit the needs of CoAP. IETF community has been very active on finding solutions to the latency and overhead issues of DTLS. The commitment of solving the problems can be seen e.g. in the TLS working group charter that describes some of the main design goals for (D)TLS v1.3:

“Develop modes to reduce handshake latency, which primarily support HTTP-based applications, aiming for one roundtrip for a full handshake and one or zero roundtrip for repeated handshakes.” [a]
The CoAP security story is based heavily on the use of DTLS with raw public keys. One deployment scenario assumes that IoT UEs would have a pre-installed asymmetric public key, and that a (truncated) hash of the public key would be used as the IoT UE identifier. The identifiers could be collected by using a barcode on the outside of the device, and stored in the server side. The identifiers would then be used to create access control lists about the IoT UEs that may use DTLS. Using strong cryptography for DTLS connection negotiation makes it possible to elongate the lifetime of the connection.

The other important assumption is that the IoT UE may not need to create DTLS sessions with several entities but only few, ideally only one. From this point of view, the situation is very different from a more typical TLS deployment scenario where TLS is supposed to be used with any server. This makes some of the DTLS protocol features look a little odd, e.g. why send the certificates (or even the information about the supported security algorithms) in every DTLS handshake if the end-points remains the same. There is obviously room for optimization in order to make the DTLS more suitable for CoAP.

X.1.2 Existing and evolving TLS optimizations

The main technique for making DTLS more suitable for CoAP is to leave the DTLS session open for much longer period of time than it is left open in other application contexts. This mode of operation is described in CoAP protocol, and the basic idea seems to be that if the DTLS handshake is done using strong credentials, it needs not to be closed that soon. This saves energy and resources from IoT UE.

“DTLS connections in RawPublicKey and Certificate mode are set up using mutual authentication so they can remain up and be reused for future message exchanges in either direction. Devices can close a DTLS connection when they need to recover resources, but in general they should keep the connection up for as long as possible. Closing the DTLS connection after every CoAP message exchange is very inefficient.” [b]

DTLS connection created using shared secrets is not mentioned, however, this does not mean that DTLS handshake created using 3GPP credentials stored in UICC would not meet the security requirements for leaving the DTLS connection open for a longer period of time.

Other reasons why DTLS connection can be left open more easily is that the proxy/server connected to UE is dedicated to server a restricted set of UEs. The amount of state maintained in proxy/server can be pre-calculated, and the risk of DoS attacks is not that severe. From the UE point of view, the amount of data that is sent over the DTLS connection at a time is very small. This means that there is less data available for a potential attacker to figure out the keys.

The dice WG (DTLS In Constrained Environments) is currently discussing about more optimized DTLS handshake procedures, and DTLS profiles for CoAP. For example, the draft-ietf-dice-profile [g] gives recommendations for chip manufacturers and software vendors on how to implement (D)TLS in CoAP devices. draft-ietf-dice-profile is a very useful document because it collects references to various RFCs and I-Ds together, and does not introduce any changes to (D)TLS but rather guides for better interoperability. It is based on (D)TLS 1.2, and strongly recommends resuming a (D)TLS sessions instead of running full handshake. However, draft-ietf-dice-profile is not a piece of work describing any real TLS optimizations as such. draft-ietf-dice-profile is currently in IESG review for publication.

X.1.3 Making the full handshake lighter

There are at least two strategies for making the TLS handshake lighter. First one is trying to reduce the size of the certificates sent during the handshake, and the second one modifying the handshake itself in order to make it more compact.

On the certificate side, the raw public key certificates specified in RFC 7250 use ASN.1Cert format that is lighter than the full X.509 certificates. For the constrained environments, even more lightweight certificate format has been proposed [c]. There is also work going on where the certificates are cached in the TLS client removing the need of sending it every time a new TLS connection is negotiated [d]. This would be a useful feature in CoAP where the communication end-point seldom changes.

TLS 1.3 that is currently under development in IETF is trying to reduce the number of messages sent in the full TLS handshake [e]. The current version includes a 1,5 roundtrips handshake (instead of 2 roundtrips of TLS 1.2). The 1,5 roundtrips mode was only possible when resuming existing TLS 1.2 sessions. This more optimized TLS handshake is very likely to be included in the next TLS standard (Figure X.1.3-1).
 ClientHello

 ClientKeyShare -------->

 ServerHello

 ServerKeyShare

 <-------- Finished
 Finished -------->

Figure X.1.3-1: Full TLS 1.3 handshake (optional/situational messages omitted)

X.1.4 Resuming existing connection

A full TLS 1.2 handshake requires 2-roundtrips (four messages) before the handshake is completed, and the application can start sending application data [f]. This means not only an increase in latency but also more security related data to be sent. It is also possible to resume earlier TLS sessions but also in this case the handshake requires 1,5-roundtrips (three messages). The amount of bits is reduced radically if compared to full handshake. We estimate that the saving would be roughly 60%.
The TLS working group is currently discussing on more radical modes of resuming the connections in TLS 1.3 namely the “1-roundtrip” and “0-roundtrip” modes. There seems to be a strong commitment within the working group to include the 0-roundtrip handshake for TLS session resumption partly because DTLS is an integral part of security of constrained environments. Interestingly, we currently estimate that the 1-roundtrip mode would not save the number of bits if compared to TLS 1.2 resumption. It would still be roughly 60% less bits if compared to full handshake. But the 1-roundtrip mode is still interesting because it reduces the latency. Note that the 0-roundtrip may not mean that all of the TLS handshake messages would be omitted. It means that the client can start sending application data directly, and the server may still reply with some TLS resume messages (Figure X.1.4-1).

Client Server

ClientHello

ClientKeyShare

{Certificate*}

{CertificateVerify*}

{Finished}

[Application Data] -------->

 ServerHello

 ServerKeyShare

 <-------- {Finished}

[Application Data] <-------> [Application Data]

Figure X.1.4-1: Overview of 0-RTT Flow

The 0-roundtrip functionality may be limited to certain use cases only, and could be used only if both the client and the server agree to use it. There is going to be new key derivation procedure for the TLS master shared secret when the session is resumed. One of the current problems is related to the TLS anti-replay feature that is based on the idea that each side provides a random value that is mixed into the keying material. The anti-reply can be achieved for the 0-roundtrip client but not to the server. It is currently discussed how this can be solved, e.g. if the server should simply drop the 0-roundtrip data when the server thinks the 0-roundtrip is not possible. The server needs to tell the client that this was done for the client application to retransmit. However, the 0-roundtrip is seen as a feature for limited cases where the application domains can safely keep state, and can profile the use of TLS.

END OF CHANGES
