3GPP TSG SA WG3 (Security) Meeting #76
S3-142284
25 Aug – 29 Aug, 2014; Sophia-Antipolis, FR
revision of S3-142081
Source:
Alcatel-Lucent
Title:
pCR to TR 33.871 - Mapping OAuth 2.0 roles to IMS WebRTC
Document for:

Discussion and Approval

Agenda Item:
7.1.2 Security Aspects of Web Real Time Communication (WebRTC) Access to IMS

Work Item / Release:
Rel-12
Abstract of the contribution:

This paper proposes a pCR update to TR 33.871 with mapping of OAuth 2.0 roles to Rel 12 3GPP IMS WebRTC
In Rel-12, OAuth 2.0 was taken as an example authorization framework to illustrate IMS Subscriber authentication based on the user’s web identity.

This paper begins with a discussion of OAuth 2.0 roles and how it maps to the Rel-12 3GPP IMS WebRTC Architecture. It later proposes an update to TR 33.871 to capture relevant material from this paper.

1. OAuth 2.0 Roles

The OAuth 2.0 framework defines the following roles (taken from RFC 6749)

· Resource owner (a.k.a. the User) - An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to as an end-user.

· Resource server (a.k.a. the API server) - The server hosting the protected resources, capable of accepting and responding to protected resource requests using access tokens.

· Authorisation server - The server issuing access tokens to the client after successfully authenticating the resource owner and obtaining authorization.
· Client - An application making protected resource requests on behalf of the resource owner and with its authorization. The term “client” does not imply any particular implementation characteristics (e.g. whether the application executes on a server, a desktop, or other devices). The OAuth 2.0 Client role is subdivided into a set of client types and profiles.

2. Client credentials

In OAuth2.0, before a Client can request access to resources on a resource server, the client application must first register with the authorization server associated with the resource server. At registration the client application is assigned a “Client ID” and “Client secret” by the authorization server. The Client ID and secret are unique to the client application on that authorization server.

3. OAuth 2.0 Client Types

The OAuth 2.0 specification defines two types of clients:

· Confidential

· Public

A confidential client is an application that is capable of keeping Client credentials (namely, Client Id and Client secret) confidential to the world. An example of a confidential client could be a web app hosted on the server, where no one but the administrator can get access to the server, and see client credentials.
A public client is an application that is not capable of keeping Client credentials confidential. For instance, a mobile phone application or a desktop application that has the client credentials embedded inside it. Such an application could get cracked, and this could reveal the client secret. The same is true for a JavaScript application running in the user’s browser. The user could use a JavaScript debugger to look into the application, and see the client secret.

4. OAuth 2.0 Client profiles

The OAuth 2.0 specification also mentions a set of Client profiles. These profiles are concrete types of applications that can be either confidential or public. The profiles are:

· Web Application
· User Agent

· Native

A Web Application is a “confidential” type of application running on a web server. In reality, a web application consists of both a browser part and a server part. If a web application needs access to a resource server (IMS services, for example), then the client secret should be stored on the server and kept confidential.

A User Agent Application is a “public” type of application running in a browser. The browser is a user agent. A user agent application may be stored on a web server but the application is running in the user agent once downloaded.
A Native Application is for instance a desktop application or a mobile phone application. Native applications are typically installed on a computer or device (phone, tablet etc.). There is no server side component in this type of application.

5. Mapping OAuth2.0 roles to 3GPP IMS WebRTC

The Rel-12 architecture for WebRTC IMS Client access to IMS is as follows:

[image: image1.png]
It would be useful to recap the following from the above architecture:

· A WebRTC IMC Client (WIC) is a WebRTC JavaScript application that provides access to the communication services of the IMS. It is downloaded from the WWSF and executes on any device (UE) that supports a WebRTC Compliant browser.

· A WebRTC Web Server Function (WWSF) is the initial point of contact for the user to access IMS communications services using WebRTC. It provides the WIC for downloading to the browser on the UE.

· The WebRTC Authorization Function (WAF) issues the authorization token after authenticating the user itself as part of the token issuance process, or it trusts the user identity provided by the WWSF.

· The WIC receives the token and constructs the required W2 Register message to be sent to the eP-CSCF embedding the received token as one of the parameters in the message.

· The eP-CSCF can chose to validate the received token by sending it to the WAF over the W5 interface. Once it receives a successful validation message from the WAF, it uses the existing TNA method to trigger IMS Registration with the IMS Core.

One can deduce the following from the above discussion:

1. WAF plays the role of the Authorization server

2. eP-CSCF plays the role of the Resource server
3. User behind the browser is the Resource owner

Mapping OAuth 2.0 Client

The JavaScript based application providing access to the IMS communication services is centrally hosted on the WWSF and available to a user for download to the UE. Once it gets downloaded to the UE (now a WIC), it runs completely in the context of the browser providing authorized access to the IMS services.

This leads to the following possibilities:

a. WWSF as the OAuth Client

In this model, WWSF is solely responsible to register and interface with the Authorization Server for the purpose of fetching an access token.

· WWSF registers with the OAuth 2.0 compliant WAF. WAF assigns a unique Client ID and Client secret to WWSF. These credentials are stored in WWSF and not exposed to the WIC.

· WIC provides a front end to the OAuth Client and does not directly interact with the Authorization Server.

· Fits well with the following Authorization grant types:

· Authorization code

· Client Credentials

· When WIC requests an access token from the Authorization Server, WWSF intercepts this request and embeds Client credentials (including the secret) into the request.

· In Authorization code grant, WAF authenticates both the user (username/pwd) and WWSF (client ID and client secret)
· In Client Credentials code grant, WAF ONLY authenticates the WWSF. WAF assumes the user is authenticated independently outside the OAuth 2.0 authorization framework.

b. WIC as the OAuth Client
In this model, downloaded WIC play the role of OAuth client.
· Before OAuth is used, the client application is first registered with the Authorization Server through offline means (not defined by OAuth spec). In response, WAF assigns a unique Client ID to the Client.
· WWSF is in possession of the Client ID and makes it available to WIC when it is downloaded to the UE.

· WIC uses the Client ID in its request to the WAF for an access token.
This model fits well with the following Authorization grant type:

· Implicit grant –

· The User Agent (browser) loads the page from WWSF and executes the WIC JavaScript code

· WIC (OAuth Client) sees that it doesn’t have an Access Token to register with the IMS network and redirects the UA to the Authorization Server with a Client ID and a redirect URL (optional).
· The Authorization Server (WAF) authenticates the user and redirects back to the UA with the access token in the URL Fragment.
· WIC extracts this access token and uses it to register with the IMS network.

6. Pseudo-CR

BEGIN CHANGE

6.1.2.2
Use of Trusted Node Authentication (TNA)

The scenario allows applying Trusted Node Authentication (TNA) specified for IMS in Annex U of TS 33.203 [5]. While TNA was specified mainly for interworking with the CS access domain, the technology is access and protocol independent. The requirements include that the trusted node (I.e. eP-CSCF) can authenticate the user by means of authentication information received from the third party authentication services, that the trusted node can provide interworking between the IMS domain and the other domain, in which the WWSF resides, if necessary, and as the name applies, that the operator trusts the WWSF and the authentication provided by the third party authentication service. It is clear that the operator trusts the eP-CSCF, performing the role of trusted node in TNA, as the eP-CSCF resides in the operator network, according to TR 23.701 [4].

The token is sent to the WebRTC IMS Client which includes it in the initial registration request to the eP-CSCF. Provided the token verification is successful, the e-PCSCF will proceed with the IMS registration of the user using TNA.

The signalling flow for when the Trusted Node performs registration on behalf of the WebRTC IMS Client is shown in Figure 6.1.2.2-1. In this figure SIP over secure WebSocket is used between the WebRTC IMS Client and the
eP-CSCF. Other protocols (e.g. HTTP RESTful or JSON over WebSocket) can also be used. The signalling between the Trusted Node and the rest of the IMS core is unchanged from the signalling flow in Annex U of TS 33.203 [5] in figure 6.1.2.2-1. The REGISTER message may, however, have to be enhanced with an additional parameter to satisfy the requirements from clause 5 of the present report.

OAuth 2.0 (IETF RFC 6749 [13]) may be used an example authentication protocol between the WebRTC IMS Client and the eP-CSCF. Annex D specifies the mapping of OAuth 2.0 roles to IMS WebRTC Architecture. In the following paragraphs of this section, role assignment based on Model A is assumed for the purpose of discussion. In model A, the user corresponds to the resource owner, the WWSF corresponds to the client, the WAF corresponds to the authorization server, and the IMS network (eP-CSCF) corresponds to the resource server.
In the OAuth 2.0 protocol the WWSF first obtains an access token from the WAF which authorizes it to access the user's IMS account. The token is then sent to the WebRTC IMS Client which includes it in the initial registration request to the eP-CSCF. Provided the token verification is successful, the e-PCSCF will proceed with the IMS registration of the user using TNA.

The access token is associated with a specific user and WWSF and has a certain lifetime and scope. This authorization information can either be encoded into the token itself and verifiable through a signature or MAC (so called self-contained token), or retrieved as part of the validation response if the validation is performed against the WAF.
If the token is self-contained and has a signature or MAC, the eP-CSCF can verify the token using the public key or pre-shared key of the WAF. If the token is a handle and has no signature or MAC, eP-CSCF needs to send token validation message to the WAF and verify the response from the WAF. The token validation protocol and interface is not defined in this release.

Annex D:
Mapping OAuth 2.0 to IMS WebRTC

The OAuth 2.0 framework defines the following roles (taken from RFC 6749)

· Resource owner (a.k.a. the User) - An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to as an end-user.

· Resource server (a.k.a. the API server) - The server hosting the protected resources, capable of accepting and responding to protected resource requests using access tokens.

· Authorization server - The server issuing access tokens to the client after successfully authenticating the resource owner and obtaining authorization.
· Client - An application making protected resource requests on behalf of the resource owner and with its authorization. The term “client” does not imply any particular implementation characteristics (e.g. whether the application executes on a server, a desktop, or other devices). The OAuth 2.0 Client role is subdivided into a set of client types and profiles.

The Rel-12 architecture for WebRTC IMS Client access to IMS is as follows:

[image: image2.png]
Various entities and the role they play in the above architecture are as follows:
· A WebRTC IMC Client (WIC) is a WebRTC JavaScript application that provides access to the communication services of the IMS. It is downloaded from the WWSF and executes on any device (UE) that supports a WebRTC Compliant browser.

· A WebRTC Web Server Function (WWSF) is the initial point of contact for the user to access IMS communications services using WebRTC. It provides the WIC for downloading to the browser on the UE.

· The WebRTC Authorization Function (WAF) issues the authorization token after authenticating the user itself as part of the token issuance process, or it trusts the user identity provided by the WWSF.

· The WIC receives the token and constructs the required W2 Register message to be sent to the eP-CSCF embedding the received token as one of the parameters in the message.

· The eP-CSCF can chose to validate the received token by sending it to the WAF over the W5 interface. Once it receives a successful validation message from the WAF, it uses the existing TNA method to trigger IMS Registration with the IMS Core.

One can deduce the following from the above discussion:

1. WAF plays the role of the Authorization server

2. eP-CSCF plays the role of the Resource server
3. User behind the browser is the Resource owner

Mapping OAuth 2.0 Client

The JavaScript based application providing access to the IMS communication services is centrally hosted on the WWSF and available to a user for download to the UE. Once it gets downloaded to the UE (now a WIC), it runs completely in the context of the browser providing authorized access to the IMS services.

This leads to the following models:

a. Model A - WWSF as the OAuth Client

In this model, WWSF is solely responsible to register and interface with the Authorization Server for the purpose of fetching an access token.

· WWSF registers with the OAuth 2.0 compliant WAF. WAF assigns a unique Client ID and Client secret to WWSF. These credentials are stored in WWSF and not exposed to the WIC.

· WIC provides a front end to the OAuth Client and does not directly interact with the Authorization Server.

· Fits well with the following Authorization grant types:

· Authorization code

· Client Credentials

· When WIC requests an access token from the Authorization Server, WWSF intercepts this request and embeds Client credentials (including the secret) into the request.

· In Authorization code grant, WAF authenticates both the user (username/pwd) and WWSF (client ID and client secret)

· In Client Credentials code grant, WAF ONLY authenticates the WWSF. WAF assumes the user is authenticated independently outside the OAuth 2.0 authorization framework.

b. Model B - WIC as the OAuth Client

In this model, downloaded WIC play the role of OAuth client.

· Before OAuth is used, the client application is first registered with the Authorization server through offline means (not defined by OAuth spec). In response, WAF assigns a unique Client ID to the Client.

· WWSF is in possession of the Client ID and makes it available to WIC when it is downloaded to the UE.

· WIC uses the Client ID in its request to the WAF for an access token.

This model fits well with the following Authorization grant type:

· Implicit grant –

· The User Agent (browser) loads the page from WWSF and executes the WIC JavaScript code

· WIC (OAuth Client) sees that it doesn’t have an Access Token to register with the IMS network and redirects the UA to the Authorization Server with a Client ID and a redirect URL (optional).
· The Authorization Server (WAF) authenticates the user and redirects back to the UA with the access token in the URL Fragment.
· WIC extracts this access token and uses it to register with the IMS network.
Editor’s Note: It is ffs whether registration scenario in TS 33.203 Annex X.4 fits into any of the models described above or needs a new mapping.

END CHANGE

7. Conclusion
We kindly ask SA3 to agree to the analysis of this contribution and approve the corresponding pCR to TR 33.871.
