3GPP TSG SA WG3 (Security) Meeting #75
S3-140820
12-16 May 2014 Sapporo (Japan)

revision of S3-13abcd
Source:
Gemalto
Title:
WebRTC: web authentication using IMS AKA credentials
Document for:
Approval
Agenda Item:
7.1.2
Work Item / Release:
IMS_WebRTC / Rel-12

Abstract of the contribution:

1. Introduction
In the scope of 3GPP TR 33.871 and WebRTC IMS Client authentication with IMS subscription using web credentials, the use of IMS AKA credentials is described in section 6.1.2.3. This contribution aims to correct the type and name of the documents referenced by the solution, solve Editor’s Notes, and provide additional information.
2. Analysis

2.1
Correction of reference
The solution described in section 6.1.2.3 states that the solution relies on IMS AKA credentials thans to GBA mechanism defined in 3GPP TR 33.823.

But, the GBA mechanism defined in 3GPP TR 33.823 was agreed and added in 3GPP TS 33.222 as “Annex D (normative) Security measures for usage of GBA with a web browser”.
Consequently, the name of reference [11] used in section 6.1.2.3 and Annex A of 3GPP TR 33.871 should be modified to refer to normative Annex D of 3GPP TS 33.222 instead of 3GPP TR 33.823. New reference content would be:

[11]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".
2.2
Editor’s Notes
· Editor's Note: it is ffs whether the WWSF could retrieve the IMPU and IMPI from the BSF.

The BSF could retrieve the IMPU and IMPI from the HSS thanks to request sent to the HSS. The IMPI (User Name) and IMPU (Public-Identity) are parameters that could be requested by the BSF to the HSS in the Multimedia-Auth-Request, as defined in 3GPP TS 29.109.
The BSF could send the IMPI and IMPU to WWSF (NAF) dedicated to WebRTC usage in the “requestBootstrappingInfoResponse” sent by the BSF to the NAF.
 2.3
Web identity
The Web identity used to perform the web authentication is the B-TID value defined by GBA procedure. The B-TID was specified to bind the subscriber identity to the IMS AKA credentials of the IMS subscription. Consequently, the Web identity relying on B-TID is trustable. Moreover, there is a secure linkage linking between Web identity (B-TID) and the IMPI/IMPU of IMS subscribtion since those identities are associated to the same IMS subscription and under the control of the operator via the HSS and the BSF.
3. Proposal: pseudo-CR to 3GPP TR 33.871 on Security for WebRTC

--START of 1st CHANGE---

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 22.228: "Service requirements for the Internet Protocol (IP) multimedia core network subsystem (IMS); Stage 1".
[3]
3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".
[4]
3GPP TR 23.701: "Study on the Support of WebRTC IMS Client access to IMS".
[5]
3GPP TS 33.203: "3G security; Access security for IP-based services".
[6]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".
[7]
W3C Web Real-Time Communications Working Group,
http://www.w3.org/2011/04/webrtc-charter.html
[8]
IETF Real-Time Communication in WEB-browsers Working Group,
http://tools.ietf.org/wg/rtcweb/
[9]
IETF RFC 5763: " Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security (DTLS)".

[10]
draft-ietf-rtcweb-security: "Security Considerations for WebRTC".

[11]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".
[12]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".
[13]
IETF RFC 6749: "The OAuth 2.0 Authorization Framework".

[14]
IETF RFC 6750: "The OAuth 2.0 Authorization Framework: Bearer Token Usage".

[15]
3GPP TS 29.228: "IP Multimedia (IM) Subsystem Cx and Dx interfaces; Signalling flows and message contents".

[16]
3GPP TS 24.292: "IP Multimedia (IM) Core Network (CN) subsystem Centralized Services (ICS); Stage 3".
[17]
IETF RFC 5764: "Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)".

[18]
draft-ietf-rtcweb-data-protocol: "RTCWeb Data Channel Protocol ".

[19]
draft-ejzak-dispatch-webrtc-data-channel-sdpneg: "SDP-based WebRTC data channel negotiation".

[20]
RFC 6714: "Connection Establishment for Media Anchoring (CEMA) for the Message Session Relay Protocol (MSRP)".
[21]
RFC 2617: "HTTP Authentication: Basic and Digest Access Authentication".
[22]

3GPP TR 33.830: "Study on Firewall traversal (Stage 2)".

--END of 1st CHANGE--

--START of 2nd CHANGE--

6.1.2.3
Example of web authentication using IMS AKA credentials

This is an example of web authentication for scenario 2. The solution relies on IMS AKA credentials thanks to GBA mechanism as defined in normative Annex D of 3GPP TS 33.222 [11].

In this solution, it is assumed that:

· The UE re-uses IMS AKA credentials;

· The WebRTC IMS Client implements GBA features as defined in normative Annex D of 3GPP TS 33.222 [11];

· The WWSF is a NAF that implements the associated GBA features described in normative Annex D of 3GPP TS 33.222 [11].

[image: image1.emf]WebRTC

IMS

Client

WWSF

/ NAF

1. HTTPS tunnel

javascript code download, gba

authentication token, auth grant

assertion

2. Open secure WebSocket using CORS

3. REGISTER request with assertion

5. OK response

4. SIP REGISTER

eP-CSCFI/S-CSCF

BSF

Figure 6.1.2.3-1: WebRTC IMS Client authentication relying on IMS AKA credentials
1. From within a WebRTC-enabled browser, the user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The TLS connection provides one-way authentication of the server based on the server certificate. The browser downloads and initializes the WIC from the WWSF.
The WWSF sends gba-related javascript code (gba.js) and authenticates the WIC by means of authentication token Ks_js_NAF, as described in Annex A of this document. After successful GBA-based authentication relying on IMS AKA credentials, the WWSF determines the IMPI and IMPU assigned to the user (the IMPI and IMPU are received from the BSF), issues a security token for the user (e.g., where the security token is a JSON Web Token) and returns the IMS identities as claims within the security token to the WIC.

2. The WIC opens a WSS connection to the eP-CSCF using CORS procedures to ensure that the WIC originated from a WWSF authorized to access this eP-CSCF.

3. The WIC sends a REGISTER request to the eP-CSCF via the WSS connection. The request includes the user identity extracted from the claims in the security token, as well as the security token received from the WWSF as an attachment to the request.

4. The eP-CSCF validates the contents of the security token and confirms that the IMS identities being registered are authorized by the security token. The eP-CSCF then forwards the authorized REGISTER request to IMS to initiate authentication-less IMS registration using TNA procedures, with an indication that the authentication has already been carried out.

5. IMS returns an OK response to the WIC to confirm the successful IMS registration.

The Web identity used to perform the web authentication is the B-TID value defined by GBA procedure. The B-TID was specified to bind the subscriber identity to the IMS AKA credentials of the IMS subscription. Consequently, the Web identity relying on B-TID is trustable. Moreover, there is a secure linkage linking between Web identity (B-TID) and the IMPI/IMPU of IMS subscribtion since those identities are associated to the same IMS subscription and under the control of the operator via the HSS and the BSF.

GBA-based web authentication relies on existing normative mechanism, applies to common IMS and provides linkage between Web identity and IMPI/IMPU of IMS subscription
--END of 2nd CHANGE--

--START of 3rd CHANGE--

Annex A:
Secure usage of GBA with UE browser
This clause describes a sequence flow for secure usage of GBA with UE browser as described in normative Annex D of 3GPP TS 33.222 [11].

In this message flow the following architecture is assumed:

-
GBA Function: The GBA Function handles establishment of GBA-specific keys. In particular, the establishment of the key Ks can use any of the methods defined by TS 33.220 [12] (e.g. based on AKA or GBA_Digest). The GBA Function is not part of the web browser.

NOTE:
In the case of GBA_Digest, the GBA Function treats SIP Digest credentials as specified in Annex N of TS 33.203 [5].

-
Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

-
GBA_API: Part of the browser that communicates with the GBA Function and receives GBA authentication token material requests from the Javascript code.

-
Javascript: Downloaded Javascript code.

-
Engine: Sets up communication with the NAF.

[image: image2.emf]

NAF

Terminal

Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure A-1: Example Architecture

Below is a sequence flow diagram of GBA usage in Web context, i.e. within Javascript.

[image: image3.emf]Nokia Internal Use Only

Web browser (Ua application)

GBA Function

Web server

(NAF)

GBA API javascript engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js)

that contains javascript GBA API

usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API

generates a request with normal

Ks_(ext)_NAF key derivation

input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol

identifier.

9. Bootstrap with BSF if

cached Ks is not available.

Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by

binding Ks_(ext)_NAF to the

server authenticated TLS

endpoint

12. Return Ks_js_NAF with B-TID and token expiration time.

13. Continue javascript execution and

use Ks_js_NAF. Then make

XMLHttpRequest call to web server

with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the

BSF using the B-TID, and then generates

Ks_js_NAF as in step 11. It then validates the

incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

Figure A-2: Example sequence flow

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e. setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

1. The web browser and the web server establish a server authenticated TLS session. The use of TLS message integrity is mandatory, while the use of TLS encryption is optional. All further messages between the web server and UE shall be sent through this tunnel.

2. The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3. The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific authentication token Ks_js_NAF.

Example on how a GBA API call could look like:

document.gba.getGBAToken(successCallback, errorCallback);

4. As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5. The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6. The Javascript comes to a point where a call to GBA API is made.

7. Browser's Javascript GBA API locates the relevant information about the Javascript, i.e. in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8. Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9. The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10. The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11. Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS session.
The values of the bindingType in GBAOptions are "tls-key-extractor" (i.e. RFC 5705 [4] is used with the label " TLS_MK_Extr ") and "tls-server-endpoint" (i.e. RFC 5929 [7] is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr, tls-server-endpoint)

The tls-server-endpoint, tls-unique value and TLS_MK_Extr are all related to the TLS connection that established the TLS session in step 1.

12. Browser's Javascript GBA API returns Javascript specific Ks_js_NAF authentication token, B-TID and authentication token lifetime to the executing javascript.

13. The Javascript continues to execute and it uses the Ks_js_NAF authentication token the way the web server has instructed (via Javascript).

Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

var token = result.token;

var btid = result.btid;

var lifetime = result.expiryTime;

}

14. After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15. The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one and validate that the TLS session is the same as was used for the request that established the TLS session in step 1.

16. If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).
--END of 3rd CHANGE--

4. Conclusion

We kindly ask SA3 to review and agree this contribution.

_1451954978.doc
Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only

11. Obtain Ks_js_NAF by binding Ks_(ext)_NAF to the server authenticated TLS endpoint

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

1. Establish TLS Tunnel.

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

16. HTTP 200 OK

14. POST /validate HTTP/1.1

12. Return Ks_js_NAF with B-TID and token expiration time.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

10. Return Ks_(ext)_NAF and B-TID.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

6. Javascript execution comes to the point where javascript GBA API is called.

5. Downloaded gba.js is executed in javascript engine.

3. Send javascript code (gba.js) that contains javascript GBA API usage.

4. HTTP 200 OK (gba.js)

2. GET /gba.js HTTP/1.1

engine

javascript

GBA API

Web server (NAF)

GBA Function

Web browser (Ua application)

Nokia Internal Use Only

Nokia Internal Use Only

Nokia Internal Use Only

_1451957046.vsd
eP-CSCF

I/S-CSCF

WebRTC IMS Client

WWSF
/ NAF

1. HTTPS tunnel
javascript code download, gba authentication token, auth grant assertion

2. Open secure WebSocket using CORS

3. REGISTER request with assertion

5. OK response

4. SIP REGISTER

BSF

_1451954939.doc

Credentials

GBA Function

Engine

Javascript

GBA API

Browser

Terminal

NAF

