3GPP TSG SA WG3 Security — SA3#72
S3-130760
8 – 12 July 2013, Qingdao, China

Source:
Research In Motion UK Ltd.
Title:
pCR: Clarifications on Timestamps for Implicit Certificates
Document for:
Discussion and decision

Agenda Item:
7.10
Work Item / Release:
PWS_Sec
1.

Introduction

The current PWS study provides initial details on use of timestamps in a PWS message. Additional details related to this are proposed for inclusion in TR33.869.
2.
Proposal
We propose the following changes to TR33.869.

%%%

Start of first change
7.6.3.3
PWS Security Contents

Implicit certificates are versatile and can be used with a variety of signature approaches including DSA and ECDSA, however the approach considered here due to efficiency in size is a Keyed-MAC signature scheme.

When operating at 112-bit security level, using a 112-bit MAC and assuming an ECQV certificate structure, 14-bytes, 28-bytes and 29-bytes are required to encode the values MAC, s and ICA respectively.

The 31-byte length for ICA assumes a certificate structure containing a 225 bit public key reconstruction value, a 15 bit certificate timestamp and a 8 bit CA_ID value. The certificate timestamp can provide one approach to protection in case a key is compromised at the message signer. The validity period of the certificate and therefore the frequency at which a message signer obtains new certificates from the CA would be decided at the national level and need not be the responsibility of operators.

In total the signature and implicit certificate occupy 73-bytes leaving 2 additional bytes that can be used for a PWS message timestamp. This timestamp would be provided and signed by the PWS message signer and indicates the validity period for the PWS warning message.

[image: image44.emf]
Figure 7.6.3.3.1 PWS Security Content

The final two bytes of the security contents consist of a timestamp provided by the message signer and indicating the validity period for the PWS warning message for the purposes of replay protection.

This can take the form of a traditional timestamp or as a message counter.

Timestamp

For the timestamp to function correctly, some degree of synchronisation is necessary between the UE and the PWS message signer.

In the case a secure automatic synchronisation method is available between the UE and network, then advantage of it could be taken by the UE in validating PWS messages.

In the case where automatic timing is not available between the UE and network, the UE could instead indicate the receipt of a PWS message with an expired certificate if one is received and present the user with the current time understood by the UE and the option of proceeding or discarding the message.

Alternatively a PWS timer could be provisioned in UEs at manufacture with a conservative time. This time could then be adjusted in the normal course of operations either by a PWS timestamp update message similar in concept to the PWS CA update message, or by an additional timestamp field in the PWS CA update message itself. Such an update timestamp would detail the current time of the PWS message signer to all receiving UEs.

Message counter

In the case a message counter is used in order to avoid the need for co-ordination between message signers, a message signer identifier should be included as part of the implicit certificate. As shown in Figure 3 this can be accomidated by reducing the implicit certificate timestamp from 15 bits to 7 bits allowing a 1 byte field for a message signer identifier (PKID).

In order to protect out of date UEs (eg: those who miss PWS warning messages and the resulting increments to a message signer’s counter) from replay attack, a PWS counter update message similar in concept to the PWS CA update message could be used or alternatively if there are only a few PWS message signers, an extra field could be included in the PWS CA update message itself. Such a field could contain 3 bytes, the message signer’s identity (PKID) of 1 byte and current counter value (NSUC) of 2 bytes, for each message signer signalled.

Editor’s note: Security considerations on automatic network timing are ffs.

Whether the PWS message timestamp takes the form of an actual timestamp or a message signer counter, the 2 bytes in the PWS security content should be included in the computation of the keyed MAC signature.
Using ECQV, the UE must compute the Message Signers Public key using the implicit certificate in addition to verifying the PWS signature.

Considering available cryptographic signature benchmarks from eBATS and assuming the armeabi platform running at 1782MHz and 128-bit level security, the full implicit certificate based approach will takes roughly 6.5ms and not more than 7.4ms. This is compared with 3.7ms for ECDSA and 18ms for DSA signature verification indicating comparable complexity to other signature schemes.

The complexity time estimates of the implicit certificate based approach are approximate and were made by considering the steps 3 and 4 of signature verification and comparing with similar steps in algorithms benchmarked in eBATS.

Steps both in encoding (at the PWS message signer) and verification (at the UE) of the Keyed-MAC can be as follows:

Keyed-MAC Signature Generation

INPUT: PWS Message Signer’s private key dA, and associated ECQV certificate structure ICA, and a message to be signed M.

OUTPUT: A signed message M, with associated security information MAC; s; ICA.

1. Generate ephemeral key pair (d,Q).

2. Construct MAC key k = KDF(Q), where KDF is a key derivation function that takes as input a point, and possibly other information, and generates an encryption key.

3. Compute MAC = MACAlgorithm(M,k).

4. Compute h = Hash(MAC||M), where Hash is a suitable hash function, that takes as input additional information including a possible identity string.

5. Convert h to an integer e.

6. Calculate s = e _ dA+d (mod n).

Output s,MAC, along with input value ICA as the associated security data for M.

Keyed-MAC Signature Verification

INPUT: Signed message M, with security information s, MAC, ICA, and the CA’s public

key QCA.

OUTPUT: VALID, or INVALID.

1. Compute h = Hash(MAC||M), with the same hash function used in the signature generation scheme, and the additional input information.

2. Convert h to an integer e.

3. Recover the PWS message signer’s public key from the certificate, QA=ECQVPublicKeyReconstruction(CertA,QCA).

4. Compute Q’ = sG-eQA.

5. Compute k’ = KDF(Q’), using the same key derivation function used in the signature generation algorithm, including the same additional information.

6. Compute MAC’ = MACAlgorithm(M,k’).

If MAC’ = MAC then return VALID, else return INVALID.

During this process the UE combines information contained within the implicit certificate with the public key of the appropriate CA to produce the message signer’s public key. As several CAs may and indeed should be supported, a means is needed to distinguish which public key is used.

This can be achieved through use of the one byte CA-ID field described in section 7.7.3.3. Each CA public key would be assigned a CA-ID value which the UE can read from the implicit certificate. Using the CA-ID the UE can look up the CA public key tied to that CA-ID in its provisioned list of CAs.

[image: image2]
Figure 7.6.3.3.2 – Example list provisioned CA public keys with associated CA-IDs

End of first change

0011011111010000110010100111

00100101

1001111010011110100111101001

00001101

List of provisioned CA public keys

Public Key (28 bytes)

byte)

1

ID (

-

CA

Bytes

-

2

Bytes

-

31

Bytes

-

28

Bytes

-

14

Keyed MAC

Timestamp

Message

PWS

Implicit Certificate

s

MAC

[image: image1][image: image3.emf][image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf][image: image10.emf][image: image11.emf][image: image12.emf][image: image13.emf][image: image14.emf][image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf][image: image21.emf][image: image22.emf][image: image23.emf][image: image24.emf][image: image25.emf][image: image26.emf][image: image27.emf][image: image28.emf][image: image29.emf][image: image30.emf][image: image31.emf][image: image32.emf][image: image33.emf][image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf]