3GPP TSG SA WG3 (Security) Meeting #72
S3-130762
8-12 July 2013; Qingdao, P.R. China

revision of S3-13abcd
Source:
Ericsson, ST-Ericsson
Title:
Using user consent for GBA and SSO
Document for:
Discussion and Approval
Agenda Item:
8.1
Work Item / Release:
FS_Int_Sec / Rel-12
Abstract of the contribution: The contribution proposes a solution to use user consent with GBA - OpenID interworking.
1 Introduction
The contribution proposes a solution to use user consent with GBA - OpenID interworking.
It is proposed to adopt the solution in TR 33.895 in a new solution clause.
2 pCR

BEGIN CHANGES

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 22.895: "Study on Service aspects of integration of Single Sign-On (SSO) frameworks with 3GPP operator-controlled resources and mechanisms".

[3]
3GPP TR 33.980: "Interworking of Liberty Alliance Identity Federation Framework (ID-FF), Identity Web Service Framework (ID-WSF) and the Generic Authentication Architecture (GAA)".

[4]
3GPP TR 33.924: "Identity management and 3GPP security interworking; Identity management and Generic Authentication Architecture (GAA) interworking".

[5]
3GPP TR 33.804: "Single Sign On Application Security for Common IMS – based on SIP Digest".

[6]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".

[7]
3GPP TS 24.109: "Bootstrapping interface (Ub) and network application function interface (Ua); Protocol details".

[8]
3GPP TS 29.109: "Generic Authentication Architecture (GAA); Zh and Zn Interfaces based on the Diameter protocol; Stage 3".

[9]
OpenID Foundation "OpenID Authentication 2.0", http://openid.net/.

[10]
3GPP TS 33.222, “Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)“

[11]
3GPP TS 22.101, “Service aspects; Service principles”.
[x1]
3GPP TR 33.905, “Recommendations for trusted open platforms”.

NEXT CHANGES

8.Y
Using user consent for GBA and SSO
8.Y.1
Rationale for solution
This solution is based on user giving her consent, or authorization, for the GAA server in terminal to derive NAF keys for a specific GAA client. The consent is achieved by a local user authentication (e.g. a PIN) between the user and the terminal. The intention of the local user authentication is to confirm the presence of the authorized user according to SA1 requirements in TS 22. 101 [11] and thereby avoid that GBA-based authentication would be used to access services in the background without the user noticing it, and ensure that only authorized persons are able to use GBA-based authentication.

The solution enables confirming that the authorized user is present and gives consent for using GBA keys for an application. Using a nonce approach ensures that the NAF keys are always fresh and not cached in the GAA client.

8.Y.2
Solution description

The solution uses the concepts defined in TR 33.905 [x1] “Recommendations for trusted open platforms”, where the realization of GBA functionality in a trusted open terminal platform is devided into so called GAA server and GAA client. The GAA server in the terminal is the counterpart of the BSF, and the GAA client in the terminal is the counterpart of the NAF. This is assumed to be a typical division in a terminal implementing GBA. Typically the terminal internal interfaces or APIs are not standardized, and it is not the intention here either. The internals of a terminal are shown in order to explain the solution.

The flow is very similar to the regular GBA flow where the GAA client in the terminal contacts the NAF in order to access a service. The NAF then indicates to the GAA client to use GBA-based keys to secure the Ua application protocol, but in addition the NAF also requires that the presence of the authorized user needs to be confirmed (by sending NonceUI). When the GAA client requests NAF keys from the GAA server, the GAA client also consequently requests local user authentication to be performed by the GAA server (by sending NonceUI). “UI” stands for “User Involvement”.
The exact mechanism for local user authentication does not need to be specified. It can be for example a PIN code which the user has defined for the GAA server. It should be noted that it is not the same as the PIN to activate the USIM application. The relevant matter is that by local user authentication, the GAA server can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application “Bank.com” can use GBA authentication.
If and only if the GAA server has locally authenticated the user, the GAA server derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the GAA server is a trusted element in the terminal which, in addition to performing bootstrapping and deriving NAF keys for all applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authenticaton is needed, the GAA server derives the regular NAF keys. This approach avoids the burden and complexity of syncing the user authentication credentials, e.g. a PIN, with the network.
The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image1.emf]6. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAF BSF

Zn

U

I

C

C

Ua

3. Get NAF keys (Nonce-UI)

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth

challenge, Nonce-UI)

7. Response (Ks_NAF-UI)

8. Calculate authentication

resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI,

...)

11. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

12. NAF key response (Ks_NAF-UI)

13. Verify auth resp with

Ks_NAF-UI

14. Ok

Figure xx: Using User consent for GBA

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.
2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.
3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.
4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the GAA server requests for user’s authorization (e.g. a PIN) to derive the NAF keys for this GAA client.

5. The user provides authorization (e.g. PIN).

6. If the user authorization was given, e.g. the provided PIN is correct, the GAA server in the terminal derives NAF keys using NonceUI as an input in the following way Ks_NAF-UI = KDF(Ks, NonceUI , …). If needed, the GAA server runs bootstrapping before step 6.
7. The GAA server provides Ks_NAF-UI to the GAA client.

8. The GAA client uses the Ks_NAF-UI as the key to calculate the authentication response for the Ua application request.
9. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

10. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_NAF_PIN using NonceUI as an input in the NAF key derivation similarly as in step 6.

11. The BSF sends Zn response with Ks_NAF-UI to the NAF.

12. The NAF uses the received Ks_NAF-UI to verify authentication response received from the GAA client in step 8.
13. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.
 The flow shows a generic authentication handshake between the GAA client and the NAF over Ua to illustrate how the mechanism works, and it should be noted that the derived NAF keys could be used to protect in principle any Ua application protocol.

END OF CHANGES

_1434194388.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

12. NAF key response (Ks_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

13. Verify auth resp with Ks_NAF-UI

4. Ask User auth & authz

5. User auth & authz

2. Ua application answer (auth challenge, Nonce-UI)

6. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

7. Response (Ks_NAF-UI)

8. Calculate authentication resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI, ...)

11. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

14. Ok

