3GPP TSG-SA3 (Security)
S3-120789
SA3#68, 9-13. July, 2012; Bratislava, Slovakia
revision of S3-120708
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Definition of Session
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web GBA
1. Introduction
This pseudo-change request proposes to add the definition of a “GBA web session” for the purpose of this Technical Report. The corresponding editor’s note is then handled and removed.
===== BEGIN CHANGE =====
3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

HTML FORM: A HTML form is a section of a HTML document containing normal content, markup, special element called controls (checkboxes, radio buttons, text fields, password fields, etc.) and labels on those controls. End users generally "complete" a form on a web page by modifying its controls (entering text, selecting radio buttons, etc.), before submitting the form to an agent for processing (e.g., to a web server).

HTML5: HTML5 is a W3C specification [8] that defines the fifth major revision of the Hypertext Markup Language (HTML), the standard language for describing the contents and appearance of Web pages.

JavaScript: JavaScript is a prototype-based scripting language that was formalized in the ECMAScript language standard. JavaScript is primarily used in the form of client-side JavaScript, implemented as part of a Web browser in order to provide enhanced user interfaces and dynamic websites.

Same origin policy: Some origin policy is a security mechanism in a client browser that permits webpage scripts to access their associated website’s data and methods but restricts its access to scripts and data stored by other websites.
GBA web session: A GBA web session is the duration where the NAF can identify that the messages relate to the same individual GBA enabled terminal and a particular browser instance running in that terminal and consist out of a sequence of related HTTP request/response transactions together with some associated server-side state. The lifetime of the session is the lifetime of the Ks_js_NAF which is equal or shorter than the Ks_NAF lifetime and it is also equal or shorter than the lifetime of the TLS session, which was used to derive the Ks_js_NAF.

NOTE:
The NAF and the UE may have to recalculate the key, when the TLS session is re-established.
===== NEXT CHANGE =====
4.2
Objectives

The document has the following objectives for the usage of GBA in web browsers:

-
There will be cryptographic key separation between different applications using GBA (e.g. MBMS, Presence, browser banking application, browser e-mail application, etc). For non-browser based applications, this is already in use in generic GBA architecture with the usage of NAF specific keys Ks_(ext/int)_NAF with the usage of NAF_Ids and protocol identifiers.

-
The NAF specific keys for the use of GBA in web browsers will be protected from man-in-the-middle attacks.

-
The GBA keys will be bound to the existing GBA web session between the browser and the web server in such a way that the keys cannot be reused in another session or reused by another entity.

-
The access to NAF specific keys by JavaScript will be restricted in such a way that a web page executing a Javascript in a web browser will have access to the NAF specific keys that it is authorized to have access to. For instance, same origin policy could be used so that a Javascript will have access to only that NAF specific key that belongs to same origin (e.g. a web page loaded from http://www.3gpp.org/ will have access to only the NAF specific key of www.3gpp.org and not be able to request keys for another origin).

Editor’s Note: Direct access to keys is considered bad cryptographic habit and it is ffs how this can be avoided in web GBA.
NEXT CHANGE

8.3.1
Example sequence flow with channel binding

In this example message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA function handles requests for GBA specific keys. It may be part of the device operating system.

· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· GBA_API: Part of the browser that communicates with the GBA Function and receives GBA key material requests from the Javascript code.

· Javascript: Downloaded Javascript code.
· Engine: Sets up communication with the NAF.

[image: image1.emf]NAF

Terminal

Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure 8.3-1. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

[image: image2]
Figure 8.3-2. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is "gba.js".

1.
The web browser and the web server establish a server authenticated TLS session.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example on how a GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS session. The two options are as follows:

If the value of the bindingType in GBAOptions is "tls-key-extractor " (i.e. RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB") then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is "tls-server-endpoint" or "tls-unique" (i.e. RFC 5929 [7] is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)
The tls-server-endpoint, tls-unique value and TLS_MK_Extr are all related to the TLS connection that established the TLS session in step 1.

Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.
12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via Javascript).

Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one and validate that the TLS session is the same as was used for the request that established the TLS session in step 1.
16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

12. Return Ks_js_NAF with B-TID and key expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

_1387101755.vsd
NAF

Terminal

Browser

GBA API

Javascript

Engine

GBA Function

Credentials

