3GPP TSG SA WG3 (Security) Meeting #67
S3-120313
21-25 May, 2012; Kyoto, Japan

Source:
InterDigital Communications
Title:
Generic GBA API for Web_GBA
Document for:
pCR
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
1. Introduction
This pseudo CR proposes the use of a generic GBA API that is agnostic to the type of browser and scripting tools in order for a web browser to leverage GBA. We describe an architecture and sequence flow that details the process.
2. Rationale

It is more convenient to have a device-specific API which can be provided as an app/applet or OS add-on. 3GPP then defines the interfaces to the application layer, i.e. to the browser and apps, as well as to the GBA function in the device. This provides an abstraction layer on top of the hardware GBA function and makes GBA functionality more easily accessible.
3. Proposed changes

***** START OF CHANGES ******
8.3
Example sequence flows

8.3.1
Example sequence flow with channel binding

In this example message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA function handles requests for GBA specific keys. It may be part of the device operating system.

· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· GBA_API: Part of the browser that communicates with the GBA Function and receives GBA key material requests from the Javascript code.

· Javascript: Downloaded Javascript code.

· Engine: Sets up communication with the NAF.

[image: image1.emf]NAF

Terminal

Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure 8.3-1. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

[image: image2]
Figure 1. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is “gba.js”.

1.
The web browser and the web server establish a server authenticated TLS tunnel.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript comes to a point where a call to GBA API is made.

7.
Browser's Javascript GBA API locates the relevant information about the Javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel. The two options are as follows:

If the value of the bindingType in GBAOptions is “tls-key-extractor” (i.e. RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB") then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is “tls-server-endpoint” or “tls-unique” (i.e. RFC 5929 is used), then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)

Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.
12.
Browser's Javascript GBA API returns Javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The Javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via Javascript).

Example how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

8.3.2
Example sequence flow with channel binding and separated GBA API
In this example message flow with channel binding the following architecture is assumed:

· GBA Function: The GBA function handles requests for GBA specific keys. It may be part of the device operating system.

· GBA_API: The GBA API communicates with the GBA Function and receives GBA key material requests from the Javascript code. This API is generic to the type of browsers and scripting tools used.

· Web Browser: The web browser is either native or downloaded and contains some functions which support usage of GBA. In particular we have in the architecture:

· Javascript: Downloaded Javascript code.
· Engine: Sets up communication with the NAF.

[image: image3.emf]Credentials

Terminal

GBA API

NAF

GBA Function

Browser

Engine Javascript

Figure 8.3-2. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context.

[image: image4]
Figure 8.3-3. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into two functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.
-
Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not be explicitly trusted, the web browser and the GBA API should not reveal any sensitive information to the Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked Javascript resources is “gba.js”.

1.
The web browser and the web server establish a server authenticated TLS tunnel.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the Javascript calling the GBA API to the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6.
The Javascript locates the relevant information, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID. The Javascript determines bindingValue. If RFC 5705 is used with the label "EXPORTER_3GPP_GBA_WEB” then

bindingValue = TLS_MK_Extr

If RFC 5929 is used, then

bindingValue = tls-server-endpoint or tls-unique value,

depending on TLS server endmoint name or TLS unique option.

Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.
7.
The Javascript comes to a point where a call to GBA API is made.

8.
GBA API receives the relevant information about the Javascript call and makes a call to ME's GBA Function with the NAF_ID obtained in step 7.

10.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

11
The GBA Function returns the Ks_(ext)_NAF key to GBA API with the bootstrapping transaction identifier (B-TID).

12.
Upon receiving the Ks_(ext)_NAF key, GBA API will derive the Javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel:

Ks_js_NAF = KDF (Ks_(ext)_NAF, bindingValue)

13.
GBA API returns Javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

14.
The Javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via Javascript).

Example how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

15.
After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

16.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

17.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the Javascript).

END OF CHANGES
Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

12. Return Ks_js_NAF with B-TID and key expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

Web browser

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

7. Javascript execution comes to the point where javascript GBA API is called.

8. GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

11. Return Ks_(ext)_NAF and B-TID.

9. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

10. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

12. Obtain Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using received bindingValue

13. Return Ks_js_NAF with B-TID and key expiration time.

14. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

15. POST /validate HTTP/1.1

17. HTTP 200 OK

16. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF as in step 11. It then validates the incoming request with Ks_js_NAF.

1. Establish TLS Tunnel.

6. javascript determines relevant parameters for GBA API call, including TLS bindingValue according to RFC 5705 or RFC 5929

_1398253868.vsd
NAF

Terminal

Browser

GBA API

Javascript

Engine

GBA Function

Credentials

_1398253869.vsd
Credentials

Terminal

GBA API

Browser

NAF

GBA Function

Engine

Javascript

