3GPP TSG SA WG3 (Security) Meeting #66
S3-120054
06-10 February, 2012; Vancouver, Canada

Source:
InterDigital
Title:
Issues with Usage of GBA with UE Browser
Document for:
Discussion / approval
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
1. Introduction
In TR 33.8de, Security for usage of GBA with a UE Browser, a use scenario is described as follows:

End user wants to use some service provider’s services (e.g., an operator), and the service provider wants to use GBA to authenticate the user.
1)
End user opens web browser application in the ME, and instructs it to go the service provider’s web page. The web page redirects the web browser to a login page if end user has not yet authenticated.
2)
Service provider’s login page has logic to discover whether javascript access to GBA is enabled in the browser or not (can be done with javascript). If GBA is not supported, the web page reverts to other means of authentication, e.g., legacy username/password. If GBA is supported, proceed to step 3.

3)
The web page has code implemented in javascript that obtains a NAF specific key and the B-TID from the GBA function in the UE. In simplest case, the browser uses these variables as username and password in an HTML FORM, and instructs the web browser to send this information back to the web server.

4)
The web server extracts the NAF specific key and the B-TID, and uses B-TID to fetch the NAF specific key from the BSF over Zn interface. The NAF compares the received NAF specific key from the BSF with the one received from the UE. If they are equal, end user is authenticated, and the requested service is provided to the ME and the end user.
2. Rationale
In TR 33.8de, Security for usage of GBA with a UE Browser, it is argued that the reason for recommending the use of Javascript was that it was simpler and did not have the same drawbacks of HTTP Digest.
3. Discussion
There are three shortcomings with the proposed use of Javascript:

1.
Javascript lacks the required standardized mechanisms to enable protection of code that handles the keys obtained from the GBA module (GBA_ME) or from the UICC (GBA_U) by the GBA enabled browser. One approach could be to use a device/OS approved GBA app (e.g. Android or iPhone app from an approved source). Another approach could be to use a Java Applet, whichcan be signed and authenticated using the NAF’s public certificate.
2.
HTTP Digest is implemented differently by different browsers and therefore the experience of using HTTP Digest is different based on the browser being used. Similarly, Javascript could be implemented differently by different browsers, since no standardized APIs are available for access to the GBA function. By providing a standardized API to the GBA functions, the Javascript which accesses the GBA function can be standardized to perform the FQDN checks and can be separated from the Javascript that interfaces to the HTTP Digest.

3.
There is a requirement to use TLS/SSLfor authentication and tunnel establishment for encryption and integrity of HTML messages / Javascript. This also includes any subsequent data sent between the server and UE. For NAF services that do not have stringent requirements on encryption and integrity this might be overkill. Instead of using TLS/SSL, an approach could be to only authenticate the script / code in the HTML messages that performs GBA using some form of code signing. Thus the overhead of using TLS/SSL is avoided and required only if the service requires a TLS/SSL connection.

4. Proposal
It is proposed to add Editor’s Notes to clause 4.1(Introduction) to indicate that security in a Javascript scenario is implementation-dependent and to clause 7.1 (Key derivation) to indicate that security associated with the use of Javascript is dependent upon the implementation of the web browser which is out-of-scope for 3GPP.
5. pCR

+++ FIRST CHANGE +++

4.1
Introduction

The most used authentication method in the Internet today is HTML FORM based authentication. It is commonly used with web browser where a login page is downloaded over HTTPS and which contains an HTML FORM with at least 'username' and 'password' fields.

The current mechanism how GBA could be used from web browser is to use GBA with HTTP Digest as specified in clause 5.3 of 3GPP TS 33.222 [3]. In this case, the GBA enabled web server can detect whether the web browser is able to perform GBA with HTTP Digest by examining the "User-Agent" header. If "3gpp-gba" product token is present in this header, then the web server (NAF) is able to perform GBA with HTTP Digest with the web browser (UE). However, HTTP Digest has one general drawback. In current implementations, once web browser has started to use HTTP Digest with a particular web server, it continues to use it until the browser instance is terminated. This is common behavior in web browsers today.

This means that there is no way of doing a logout as browser keeps on sending the HTTP Digest headers back to the web server. Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not straight forward as the authentication happens in different layers of protocols and with different input windows (as web browsers typically implement a dialog window to handle the query HTTP Digest authentication credentials from the end user compared to HTML FORM having query for the credentials implemented as part of the web page itself).

In order to simplify the usage of GBA in web browser this TR outlines the access to GBA in HTML layer, namely using Javascript.
Editor’s Note: Security in a Javascript scenario is implementation-dependent and alternative mechanisms that provide security that is not implementation-dependent are FFS.
--- FIRST CHANGE ---

+++ SECOND CHANGE +++

7.1
Key derivation

In order to ensure the key separation in the HTML FORM based authentication in Ua reference point, both the FQDN and a Ua security protocol identifier for the NAF_ID needs to be specified.

FQDN

Web browser and ME vendors should check that when a Javascript requests the NAF specific key that the used FQDN in NAF_ID matches the FQDN of the origin of the web page that has the Javascript. The FQDN matches the URL of the origin. The FQDN shall also be present in the TLS server certificate. Thus, UE should be required to do this check. Implementation wise it is the web browser that has to do this check in the UE.

Editor’s Note: Security associated with the use of the FQDN in Javascript in the manner described above is dependent upon the implementation of the web browser, which is out-of-scope for 3GPP.
--- SECOND CHANGE ---

