SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 (Security) Meeting #66
(S3-120217
6-10 February 2012; Vancouver, Canada
revision of S3-120131

Source:
Ericsson, ST-Ericsson

Title:
pCR: Web GBA key derivation

Document for:
Discussion and decision

Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
NOTE: Tdoc S3-120217 is an update of S3-120131. S3-120131 proposed to use both RFC 5705 and RFC 5929 in parallel and either of them could be used. However in this new version, channel binding using RFC 5929 is proposed as a new alternative mechanism in addition to the existing channel binding mechanism in the TR that uses RFC 5705.
Technically the content is practically equal to S3-120131, but it is only presented as a new alternative. We hope this new version can be handled instead S3-120131.

1
Introduction
This pseudo CR suggests an additional method for performing TLS channel binding in GBA in browser. The alternative method uses RFC 5929 (Channel Bindings for TLS) instead of RFC 5705 (TLS keying material exporter).

The issue of which channel binding mechanism to use was brought up earlier in relation to GBA digest (see S3-110416). The main reason why RFC 5705 was chosen then is that it provides key establishment which is useful for GBA digest but not for GBA in browser.

2
Discussion and justification

The purpose of TLS channel binding is to prevent man-in-the-middle attacks where the attacker obtains the client’s credential by posing as the server and uses it to log onto the real server. By binding the credential to the underlying TLS layer one ensures that the credential cannot be reused a second time and the attack is effectively stopped. The binding is typically done by hashing the credential with some attribute of the TLS connection.

The question is then which attribute to choose? The current GBA in browser proposal uses the TLS key exporter defined in RFC 5705 and sets the attribute as:

a = TLS_MK_Extr = PRF(master_secret, label, client_random, server_random)

This choice is suboptimal both from a security and a deployment perspective. Looking at the definition of the exporter function, one sees that the server’s public key doesn’t affect its output. This means that the man-in-the-middle attack is still possible if one of the non-ephemeral cipher-suites is used (see the security considerations section in RFC 5705). Deployment wise the solution is not ideal either as it cannot be used together with existing server-side proxies (TLS accelerators or reverse HTTP proxies), which are commonly found in web server deployments. Furthermore, most commercial web servers (e.g., Apache or Microsoft IIS) allow only very limited access to the TLS layer, and extracting the attribute information would require modifying the web server. One should also bear in mind that RFC 5705 was not designed for channel binding but for key export (e.g., for use in DTLS-SRTP).

An alternative method, which is proposed by this document, has the advantage that it may be used with any type of web server and in deployments with server-side proxies. At the same time it also provides protection in the case where one (or even all, it doesn’t matter) of the browser root CAs gets compromised.

RFC 5929 already defines tls-server-endpoint and tls-unique channel binding attributes:

a = tls-server-endpoint = hash of the server certificate

a = tls-unique = the client’s Finished message

This document proposes to use these. However, if the derived credential gets stolen through code injection (e.g., cross-site-scripting or inclusion of malicious third-party-code) then the tls-server-endpoint binding type is not sufficient. To prevent reuse of the credential even in this scenario, one has to use the tls-unique binding type which binds the credential to the particular TLS connection. The downside is the same as for TLS_MK_Extr, namely the lack of support in web servers and server-side proxies. One could argue though that if a vendor ever decides to support channel binding in their product, then they are more likely to implement RFC 5929 which is specifically designed for this purpose.
3
PCR
************* START OF CHANGE 1 ***************
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".

[3]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[4]
IETF RFC 5705 (2010): "Keying Material Exporters for Transport Layer Security (TLS)".
[5]
IETF RFC 5929 (2010): "Channel Bindings for TLS".
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

************* END OF CHANGE 1 ***************

************* START OF CHANGE 2 ***************
6.3
Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.2, introduces another threat. Given that in commonly used browsers there are 100+ root certificates from certification authorities (CAs) who have different levels of security protection when issuing and managing certificates, it can be questioned generally, how secure TLS with server authentication really is. If one CA is compromised, then from GBA's perspective all server authenticated TLS sessions are compromised.

To mitigate the threat, the TLS channel should be bound to the key derivation process of GBA. As the key derivation of Ks_(ext)_NAF is already defined with a fixed set of input parameters, and backward compatibility by not changing this key derivation should be ensured, a new javascript specific key should be derived from Ks_(ext)_NAF using a channel binding mechanism. This channel binding mechanism shall be based on either RFC 5705 (Keying Material Exporters for TLS) [4] or RFC 5929 (Channel Bindings for TLS) [5].
************* END OF CHANGE 2 ***************

************* START OF CHANGE 3 ***************
7.2
Channel binding

To mitigate the threat introduced in clause 6.3, a second level of key derivation is introduced. When javascript code that is downloaded from the web server via the server authenticated TLS tunnel requests for a GBA based key, the request is first handled by the web browser and more specifically the GBA API module in the web browser. The GBA API module will request the Ks_(ext)_NAF key from the GBA Function in the ME using the javascript specific NAF_ID as specified in clause 7.1. After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API will derive a javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel.

The channel binding can be performed using either RFC 5705 or RFC 5929, as is described below. It is possible for the JavaScript code to select which option to use when it requests the Ks_js_NAF key from the GBA API. An example sequence flow is in clause 8.3.1.
7.2.1 Option 1: Channel binding using RFC 5705

After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API obtains the TLS_MK_Extr, which is extracted from the TLS master key using the exporter function as specified in RFC 5705 [4]. The label for the exporter function shall be "EXPORTER_3GPP_GBA_WEB ". The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

Editor's note:
The label "EXPORTER_3GPP_GBA_WEB" for the exporter function needs to be registered with IANA.

7.2.2 Option 2: Channel binding using RFC 5929
After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API obtains either the tls-server-endpoint or tls-unique binding type as specified in RFC 5929 [5]. The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)
The tls-server-endpoint binding type (the fingerprint of the server’s certificate)
has the advantage that it may be used with existing web servers and server-side proxies without modifications to the web servers or proxies. At the same time it also provides protection in the case where one of the browser root CAs gets compromised. However, if the derived key gets stolen through code injection (e.g., cross-site-scripting or inclusion of malicious third-party-code) then the tls-server-endpoint binding type is not sufficient. To prevent reuse of the key even in this scenario, one has to use the tls-unique binding type (the client’s Finished message in the TLS handshake) which binds the credential to the particular TLS connection. The downside of this binding type, however, is the lack of support in web servers and server-side proxies.

************* END OF CHANGE 3 ***************
************* START OF CHANGE 4 ***************
8.2.1
GBA API Description

Below is an example how javascript based GBA API could be specified:

[NoInterfaceObject]

interface DocumentGBA {

 readonly attribute GBA gba;

};

Document implements DocumentGBA;

[NoInterfaceObject]

interface GBA {

 void getGBAKey(in GBACallback successCallback,

 in optional GBAErrorCallback errorCallback,

 in optional GBAOptions options);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBACallback {
 void handleEvent(in GBAKeyInfo keyinfo);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBAErrorCallback {

 void handleEvent(in GBAError error);

};
[Callback, NoInterfaceObject]

interface GBAOptions {

 attribute boolean forceBootstrap; // force bootstrapping; default false
 attribute DOMString bindingType; // TLS channel binding; the options are
 // “tls-key-extractor” for option 1, OR
 // “tls-server-endpoint” (default), and
 // “tls-unique” for option 2
};

// The NAF_ID is determined by the web browser. The FQDN is taken from the origin URL

// of the web page that has the javascript. The Ua security protocol identifier is

// (0x01,0x00,0x02,yy,zz) where the yy,zz is CipherSuite in the used TLS tunnel (HTTPS).

// If TLS tunnel was not used, (0xFF, 0xFF, 0xFF, 0xFF, 0xFF) is used as Ua security

// protocol identifier. The latter case is not specified in 3GPP and it should only be

// used for testing purposes.

interface GBAKeyInfo {

 readonly attribute DOMString key; // base64 encoded GBA key: Ks_(ext)_NAF

 readonly attribute DOMString btid; // B-TID

 readonly attribute long bootstrapTime; // Bootstrap time; millisecs since 1.1.1970

 readonly attribute long expiryTime; // Key expiry: millisecs since 1.1.1970

 readonly attribute DOMString fqdn; // used FQDN

 readonly attribute DOMString uaSecProtId; // base64 encoded Ua security prot. id;

};

interface GBAError {

 readonly attribute unsigned short code; // error code (to be specified)

 readonly attribute DOMString message; // textual description of the error

};

************* END OF CHANGE 4 ***************
************* START OF CHANGE 5 ***************
8.3.1
Example sequence flow with channel binding

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within javascript.

Editor's note:
An architecture diagram needs to be added to this document outlining the nodes of the message flow below.

[image: image1]
Figure 1. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any javascript executing in the web browser. As javascript should not be explictly trusted, the web browser and the GBA API should not reveal any sensitive information to the javascript, nor should they accept any sensitive information from the javascript more than necessary.

-
javascript module executes the downloaded javascript. Any javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked javascript resources is “gba.js”.

1.
The web browser and the web server establish a server authenticated TLS tunnel.

2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example GBA API call could look like:

document.gba.getGBAKey(successCallback,

 errorCallback);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the javascript in gba.js in javascript sandbox.

6.
The javascript comes to a point where a call to GBA API is made.

7.
Browser's javascript GBA API locates the relevant information about the javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel. The two options are as follows:

If the value of the bindingType in GBAOptions is “tls-key-extractor” (i.e. RFC 5705 is used) then Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is “tls-server-endpoint” or “tls-unique” (i.e. RFC 5929 is used) then Ks_js_NAF is derived as:
Ks_js_NAF = KDF (Ks_(ext)_NAF, tls-server-endpoint or tls-unique value)
12.
Browser's javascript GBA API returns javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via javascript).

Example how javascript can extract parameters from result object in javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the javascript).

************* END OF CHANGE 5 ***************
1. Establish TLS Tunnel.

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF inusing TLS_MK_Extr. the same way as in step 11. It then validates the incoming request with Ks_js_NAF.

16. HTTP 200 OK

14. POST /validate HTTP/1.1

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

12. Return Ks_js_NAF with B-TID and key expiration time.

11. ObtainObtain TLS_MK_Extr and derive Ks_js_NAF by binding KS_(ext)_NAF to the server authenticated TLS tunnel using either RFC 5705 or RFC 5929

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

10. Return Ks_(ext)_NAF and B-TID.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

6. Javascript execution comes to the point where javascript GBA API is called.

5. Downloaded gba.js is executed in javascript engine.

3. Send javascript code (gba.js) that contains javascript GBA API usage.

4. HTTP 200 OK (gba.js)

2. GET /gba.js HTTP/1.1

engine

javascript

GBA API

Web server (NAF)

GBA Function

Web browser (Ua application)

3GPP

SA WG3 TD

