3GPP TSG-SA3 (Security)
S3-111128
SA3#65, 7 – 11. November, 2011; San Diego, USA
revision of S3-11xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
pCR: Web GBA baseline
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
1.
Introduction
This pseudo-CR contains an introduction and the baseline of web gba and is build on top of from S3-110107. In addition, we provide a usage scenario to give rise to the threat, and introduce the channel binding mechanism for web gba.
In addition, this contribution also introduces channel binding as additional control mechanism for Web-GBA. For more details, see clause 6.3 in the pseudo-CR. S3-110416 discusses the channel binding and channel binding parameters in the context of GBA_Digest. We follow the same design principles and recommend to extract a session key from a TLS master as specified in RFC 5705.

2.
Pseudo-CR

Pseudo-CR is based on TR skeleton outlined in S3-110831.

---------------------- BEGIN CHANGE --------------------------
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
[3]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[4]
IETF RFC 5705 (2010): "Keying Material Exporters for Transport Layer Security (TLS)".

…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

---------------------- BEGIN NEXT CHANGE --------------------------

4
Assumptions about Architecture for using GBA from a UE web browser

Editor’s Note: This chapter will contain the reference to the GBA architecture and additionally some basic assumptions how the browser and the GBA Module will interact. The purpose is to set a clear framework for the following sections and to avoid misunderstandings due to different assumptions.
4.1
Introduction

The most used authentication method in the Internet today is HTML FORM based authentication. It is commonly used with web browser where a login page is downloaded over HTTPS and which contains an HTML FORM with at least 'username' and 'password' fields.

The current mechanism how GBA could be used from web browser is to use GBA with HTTP Digest as specified in clause 5.3 of 3GPP TS 33.222 [3]. In this case, the GBA enabled web server can detect whether the web browser is able to perform GBA with HTTP Digest by examining the "User-Agent" header. If "3gpp-gba" product token is present in this header, then the web server (NAF) is able to perform GBA with HTTP Digest with the web browser (UE). However, HTTP Digest has one general drawback. In current implementations, once web browser has started to use HTTP Digest with a particular web server, it continues to use it until the browser instance is terminated. This is common behavior in web browsers today.
This means that there is no way of doing a logout as browser keeps on sending the HTTP Digest headers back to the web server. Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not straight forward as the authentication happens in different layers of protocols and with different input windows (as web browsers typically implement a dialog window to handle the query HTTP Digest authentication credentials from the end user compared to HTML FORM having query for the credentials implemented as part of the web page itself).
In order to simplify the usage of GBA in web browser this TR outlines the access to GBA in HTML layer, namely using javascript.
5
Usage Scenarios and accompanying Threats for using GBA from a UE web browser

Editor’s Note: This chapter will contain the usage scenario and the threats that can be deducted from it.
5.1
Usage Scenarios
5.1.1
Usage scenario 1

End user wants to use some service provider’s services (e.g., an operator), and the service provider wants to use GBA to authenticate the user.
1)
End user opens web browser application in the ME, and instructs it to go the service provider’s web page. The web page redirects the web browser to a login page if end user has not yet authenticated.
2)
Service provider’s login page has logic to discover whether javascript access to GBA is enabled in the browser or not (can be done with javascript). If GBA is not supported, the web page reverts to other means of authentication, e.g., legacy username/password. If GBA is supported, proceed to step 3.

3)
The web page has code implemented in javascript that obtains a NAF specific key and the B-TID from the GBA function in the UE. In simplest case, the browser uses these variables as username and password in an HTML FORM, and instructs the web browser to send this information back to the web server.

4)
The web server extracts the NAF specific key and the B-TID, and uses B-TID to fetch the NAF specific key from the BSF over Zn interface. The NAF compares the received NAF specific key from the BSF with the one received from the UE. If they are equal, end user is authenticated, and the requested service is provided to the ME and the end user.
5.2
Threats

The usage scenarios described in clause 5.1 are susceptible to three serious threats:
Threat 1:
ME downloads a web page from an attacker that has javascript which requests all NAF specific keys that is interested in.

Threat 2:
ME uses a public access point that is controlled by attacker, i.e., classic man-in-the-middle attack. When the ME requests the login page from the service provider, the attacker sends back a rogue login web page as it controls the DNS. This rogue login page has javascript that is able to extract any NAF specific key of the service provider, and send it back to the attacker.
Threat 3:
It is possible for any third party on the internet connection to eavesdrop on the B-TID and the Ks_NAF, and impersonate the user as long as the B-TID has not expired.
6
Control of GBA Credentials and GBA Module in the UE

Editor’s Note: This chapter will outline control mechanism to secure the handling of GBA credentials in the terminal and potential supporting measures in the network.
6.1
Control Mechanism 1 – Same Origin Keys
To mitigate threat 1 in clause 5.2, the web browser should limit a web page to access only to those NAF specific keys that belong to origin web server. This way javascript has access only to one NAF’s keys, which is the NAF identified by the origin of the web page. All web browsers currently implement a single-origin policy where the javascript is able to send HTTP requests only to the server from where the original web page came from.

6.2
Control Mechanism 2 – Server Authenticated TLS
To mitigate threat 2 and threat 3, HTTPS, i.e, server authenticated TLS, should be used with integrity and confidentiality protection. This way attacking DNS does not help the attacker as the origin of the web page is authenticated using TLS, and the web page content, and B-TID and Ks_(ext)_NAF are confidentially protected against evesdropping.
6.3
Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.2, introduces another threat. Given that in commonly used browsers there are 100+ root certificates from certification authorities (CAs) who have different levels of security protection when issueing and managing certificates, it can be questioned generally, how secure TLS with server authentication really is. If one CA is compromised, then from GBA's perspective all server authenticated TLS sessions are compromised.
To mitigate the threat, the TLS channel should be bound to the key derivation process of GBA. As the key derivation of Ks_(ext)_NAF is already defined with a fixed set of input paramters, and backward compatibility by not changing this key derivation should be ensured, a new javascript specific key should be derived from Ks_(ext)_NAF using a channel binding mechanism. This channel binding mechanism shall be based on a session key extracted from the TLS master key as specified in RFC 5705 [4].
---------------------- END CHANGE --------------------------

3
Conclusion

We ask SA3 to approve the pseudo-CR so that is can be incorporated to the TR
