3GPP TSG SA WG3 (Security) Meeting #65
S3-111049
7-11 November 2011; San Diego, USA

revision of S3-11abcd
Source:
ZTE Corporation, China Unicom
Title:
Interworking message flow with OpenID
Document for:
Discussion and Approval
Agenda Item:
8.4
Work Item / Release:
11
Abstract of the contribution:
 This contribution provides a basic message flow for interworking with OpenID.
1 Introduction

This contribution provides a basic message flow to allow the interworking with OpenID in which the OpenID Provider is a third party.
2
Proposal

We kindly propose SA3 to discuss about this and accept the following P-CR.
***** Start of first change *****
7.3.2.2
Solution 2 –Details of Interworking with OpenID
The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8].In the following a message flow is defined to allow the interworking with OpenID and the specific message flow is depicted as shown in Figure 7.3.6.

[image: image1.emf]UE

RP

IdP(SSO)HSS

10.Generate nonce;

store nonce and H(A1)

12.Generate cnonce,H(A1)

and K0;Calculate response;

14.Check against nonce;calculate

Xresponse and compare Xresponse

with response;calculates the value of

rspauth;Generate K0

1.User-Supplied-Identifier

4.Redirect ME to OP with

 OpenID Authentication Request

9.Get SD-AV&User profile

based on U_credential

U_credential,realm,qop,algorithm,H(A1)

13.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

11.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

16.Redirect ME to OP/AS

EK0(nonce1,OP/AS_Auth);EKo,i(K1,UE_Auth)

18.Redirected to OP/AS

EKo,i(K1,UE_Auth)

8.Authenticate OP/AS; check K0

17.Decrypt EK0(nonce1,OP/AS_Auth);

Obtain nonce1and OP/AS_Auth;

generate and compare rspauth;

generate K1

Establishment of

shared secret Ko,i

15.Know UE authentication result

information UE_Auth;Generate

nonce1 and then generate K1;K0

encrypts nonce1and OP/AS_Auth;

EK0(nonce1,OP/AS_Auth);EKo,i(K1,UE_Auth)

19.Decrypt EKo,i(K1,UE_Auth),obtain

UE_Auth and K1;Generate an assertion

OP/AS

2.Retrieval of OP address

3.Establishment of

shared secret(opt)

5.HTTPS GET Request

6.Response with a HTTPS response code 401

7.HTTP request to the IdP with a UE Authentication Request

21.RP validates the assertion

20.Redirect ME browser to RP

together with authentication assertion

Figure 7.3-6 Interworking message flow with OpenID
The basic message flow is as follows:
To initiate OpenID Authentication, the Relying Party should present the end user with a form that has a field for entering a User-Supplied Identifier. The form field’s “name” attribute should have the value “openid_identifier”.
1. The browser in the ME sends a User-Supplied Identifier to the Relying Party
2. The User-Supplied Identifier is normalized as described in Appendix A.1 of [14]. The RP retrieves the address of the OP and performs a discovery of the OP Endpoint URL (based on the User-Supplied Identifier) that the end user wishes to use for authentication.
3. The RP and the OP may then establish a shared secret (called association) using the Diffie-Hellman Key Exchange Protocol. The purpose of this shared secret is that the OP can sign subsequent messages and the RP can verify those messages.
Note: The Diffie-Hellman Key Exchange Protocol between the OP and the RP lies outside of the 3GPP specifications, this association using Diffie Hellman is an optional feature and not required for interworking purposes. If the OP and RP do not both reside under the control of the same MNO, the usage of this option seems strongly advisable。
4. The RP redirects the ME’s browser to the OP with an OpenID Authentication Request as defined in chapter 9 in [14]. The RP inserts into the openid.claimed_id and into the openid.identity fields the user supplied identifier of step 1.
5. Following this redirection the ME sends a HTTPS GET request to the OP.
6. The OP/AS initiates the ME authentication and responds with a HTTPS response code 401 “Unauthorized”, which contains a WWW Authenticate header carrying a challenge requesting the UE to use SIP Digest Authentication with SSO_APS. The response message also includes the OP/AS credential (OP/AS_credential).
NOTE: The OP/AS and the IdP shall have a shared secret (Ko,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the OP/AS and IdP are out of scope.
7. If no valid K0 is available, then the ME sends a second HTTP request to the IdP with a UE Authentication Request carrying the UE credential (U_credential) and OP/AS_credential.

8. The IdP obtains the OP/AS_credential; The IdP authenticates the RP based on the OP/AS_credential; then generates and stores related authentication result OP/AS_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 15; otherwise, the process goes on to the next step.

9. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

10. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

11. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

12. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

13. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

14. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. If the UE is successfully authenticated, the IdP calculates the value of rspauth based on SIP Digest as specified in RFC 2617 [5] and generates the shared secret K0 based on the H(A1), the cnonce, etc.

15. The IdP knows the User authentication conclusion (UE_Auth); and then the IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and OP/AS_Auth using K0, i.e. EK0(nonce1,OP/AS_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).
16. The IdP sends the UE an message including EK0(nonce1,OP/AS_Auth), EKr,i (K1,UE_Auth) ,and the value of rspauth with redirection.
17. The UE decrypts the EK0(nonce1,OP/AS_Auth) and then obtains OP/AS_Auth and nonce1. Based on the OP/AS_Auth the UE knows the legitimacy of the requested OP/AS. If the authentication result indicates that the OP/AS is not valid, the UE will stop visiting the OP/AS. The UE calculates the rspauth in the same way as the IdP did in step 14, and uses it to check against the rspauth sent by the IdP. If the check is successful, the authentication of the Network is succeeded, else the authentication fails. If the Network is successfully authenticated, and then the UE will generates the shared secret K1 based on K0, nonce1.

18. The message sent by the IdP is redirected to the OP/AS including EKr,i (K1,UE_Auth).
19. The OP/AS decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1. The OP/AS establishes whether the end user is authorized to perform OpenID Authentication and wishes to do so based on the authorization information stored in the UE_Auth. In particular, the UE_Auth may contain information about the type of information which is allowed to be shared with the RP. The OP/AS authenticates the user of OpenID using SSOa reference point, and generates an assertion based on the authorization information.
20. The OP/AS redirects the browser to the return OpenID address i.e. the OP/AS redirects the ME’s browser back to the RP with either an assertion that authentication is approved or a message that authentication failed. The response header contains a number of fields defining the authentication assertion which may be protected by the shared secret between OP/AS and RP. The protection is especially important if the OP/AS and the RP do not reside both in the same MNO network.
21. The RP validates the assertion i.e. checks if the authentication was approved. The authenticated identity of the user is provided in the response message towards the RP. If a shared secret was established in step 3, then it is now used to verify the message from the OP/AS. If the validation of the assertion and the verification of the message are successful, then the user is logged in to the service of the RP.
If there is a failure in steps 1 through 21 – the authentication procedure stops.
***** End of changes *****

_1379829954.vsd
�

UE�

RP�

IdP(SSO)�

HSS�

3.Establishment of shared secret(opt)

10.Generate nonce;
store nonce and H(A1)�

12.Generate cnonce,H(A1) and K0;Calculate response;

14.Check against nonce;calculate Xresponse and compare Xresponse with response;calculates the value of rspauth;Generate K0

1.User-Supplied-Identifier

5.HTTPS GET Request

4.Redirect ME to OP with
 OpenID Authentication Request

9.Get SD-AV&User profile
based on U_credential
U_credential,realm,qop,algorithm,H(A1)

13.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

11.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

16.Redirect ME to OP/AS
EK0(nonce1,OP/AS_Auth);EKo,i (K1,UE_Auth)

18.Redirected to OP/AS
EKo,i (K1,UE_Auth)

8.Authenticate OP/AS; check K0

17.Decrypt EK0(nonce1,OP/AS_Auth);
Obtain nonce1and OP/AS_Auth; generate and compare rspauth; generate K1

21.RP validates the assertion

Establishment of shared secret Ko,i

15.Know UE authentication result information UE_Auth;Generate nonce1 and then generate K1;K0 encrypts nonce1and OP/AS_Auth; EK0(nonce1,OP/AS_Auth);EKo,i (K1,UE_Auth)

19.Decrypt EKo,i (K1,UE_Auth),obtain UE_Auth and K1;Generate an assertion

20.Redirect ME browser to RP together with authentication assertion

OP/AS�

2.Retrieval of OP address

6.Response with a HTTPS response code 401

7.HTTP request to the IdP with a UE Authentication Request

