3GPP TSG-SA3 (Security)
S3-111166
SA3#65, 7 – 11. November, 2011; San Diego, USA
revision of S3-11xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
pCR: Key Diversity - Channel binding for web gba
Document for:
Discussion and Approval
Agenda Item:
7.5.1
Work Item / Release:
Web_GBA
1.
Introduction
This discussion paper introduces an additional protection mechanism for Web GBA. In this mechanism, the key that is going to be used in the javascript is further diversified from the Ks_(ext)_NAF by deriving a javascript specific session key that is extracted the TLS master key as specified in RFC 5705. Ks_(ext)_NAF key as such would not be used in the javascript at all. See further details below.
2.
Pseudo-CR

Pseudo-CR is based on TR skeleton outlined in S3-110831.
---------------------- BEGIN CHANGE --------------------------
7.2
Channel binding

To mitigate the threat introduced in clause 6.3, a second level of key derivation is introduced. When javascript code that is downloaded from the web server via the server authenticated TLS tunnel requests for a GBA based key, the request is first handled by the web browser and more specifically the GBA API module in the web browser. The GBA API module will request the Ks_(ext)_NAF key from the GBA Function in the ME using the javascript specific NAF_ID as specified in clause 7.1. After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API will obtain the TLS_MK_Extr, which is extracted from the TLS master key using the exporter function as specified in RFC 5705 [4]. The label for the exporter function shall be "EXPORTER_3GPP_GBA_WEB ". The TLS_MK_Extr is used to derive a javascript specific key Ks_js_NAF that is bound to the server authenticated TLS tunnel. The Ks_js_NAF shall be derived from Ks_(ext)_NAF as follows:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)
Editor's note:
The label "EXPORTER_3GPP_GBA_WEB" for the exporter function needs to be registered with IANA.
An example sequence flow is in clause 8.3.1.

---------------------- BEGIN NEXT CHANGE --------------------------

8.3
Example sequence flows

8.3.1
Example sequence flow with channel binding
Below is an example sequence flow diagram of GBA usage in Web context, i.e., within javascript.

[image: image1]
Figure 1. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related functions properly, i.e., setting TLS sessions with servers, sandboxing the javascript code that is downloaded from the web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the web browser is divided into three functional blocks:

-
engine module handles the basic functionalities for the web browser like setting up TLS with web servers, downloading web resources from network, and providing the user interface with the end user.

-
GBA API module offers the API towards any javascript executing in the web browser. As javascript should not be explictly trusted, the web browser and the GBA API should not reveal any sensitive information to the javascript, nor should they accept any sensitive information from the javascript more than necessary.

-
javascript module executes the downloaded javascript. Any javascript executing in web browser should be considered not trusted and should not be granted access to sensitive resources or the access to those resources should be controlled.

The communication between web browser and web server in the depicted sequence flow diagram is executed inside a server authenticated TLS tunnel. Also, the web browser is in the process of downloading a html page where one of the linked javascript resources is “gba.js”.

1.
The web browser and the web server establish a server authenticated TLS tunnel.
2.
The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3.
The web server sends the gba.js file that contains the javascript GBA API call on the browser. The gba.js can also contain additional logical elements that make use of the Javascript specific key Ks_js_NAF.

Example GBA API call could look like:

var params = new Object();

document.gba.getGBAKey(successCallback,

 errorCallback,

 params);

4.
As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5.
The engine in the web browser starts to execute the javascript in gba.js in javascript sandbox.

6.
The javascript comes to a point where a call to GBA API is made.

7.
Browser's javascript GBA API locates the relevant information about the javascript, i.e., in what html page it is executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS tunnel. The FQDN of the NAF can be extracted from the url of the web page, and the Ua security protocol identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol identifier form the NAF_ID.

8.
Browser's javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9.
The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks, Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10.
The GBA Function returns the Ks_(ext)_NAF key to browser's javascript GBA API with the bootstrapping transaction identifier (B-TID).

11.
Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will obtain the TLS_MK_Extr attribute of the TLS tunnel as specified in RFC 5705 [4] using the label "EXPORTER_3GPP_GBA_WEB", and generate a javascript specific Ks_js_NAF key using this attribute:

Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

12.
Browser's javascript GBA API returns javascript specific Ks_js_NAF key, B-TID and key lifetime to the executing javascript.

13.
The javascript continues to execute and it uses the Ks_js_NAF key the way the web server has instructed (via javascript).

Example how javascript can extract parameters from result object in javascript (continued from step 2).

function successCallback(result) {

 var key = result.key;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14.
After executing the client side logic, the javascript makes a XMLHttpRequest (ajax call, HTTP request) to the web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15.
The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF with the TLS_MK_Extr attribute the same way it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one.

16.
If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and return the result to the web browser (to the javascript).

---------------------- END CHANGE --------------------------

3
Conclusion

We ask SA3 to approve the pseudo-CR so that is can be incorporated to the TR
Web browser (Ua application)

GBA Function

Web server (NAF)

GBA API

javascript

engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a request with normal Ks_(ext)_NAF key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if cached Ks is not available. Generate Ks_(ext)_NAF.

11. Obtain TLS_MK_Extr and derive Ks_js_NAF

12. Return Ks_js_NAF with B-TID and key expiration time.

13. Continue javascript execution and use Ks_js_NAF. Then make XMLHttpRequest call to web server with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF using the B-TID, and then generates Ks_js_NAF using TLS_MK_Extr. It then validates the incoming request with Ks_js_NAF.

1. Establsih TLS Tunnel.

