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1
Introduction

The TR 33.914 describes the re-use of non-UICC credentials to provide security for the access to application. The SSO to application based on SIP Digest gives users sigle signning in action  to access the application supproting authentication mechanisms. In order to do this procedure, some of solutions suggested, however, related to indeintifier of SSO application need more consideration to make the 3GPP SA3 Group decision.  This document raises the issue regarding identifier of SSO application.
2 
Discussion and proposal

The TR 33.914 deals with the solution using authentication process of SIP digest based SSO.  For example, the section 7.3.2.1  has the procedure figure 7.3-1 of non-UICC based GBA sotlution. In step 1 there is editors’s note says that “ the identifier e.g IMPI and the transfer of the new credential to the UE are FFS”. This document rais the concern using IMPI as the initiation Identifier for SSO. IMPI is a unique permanently allocated global identity, however, it is important identifier for registration, authorization, and administration. Therefore, exposure of IMPI to RP, if RP is compromised, can cause the critical problem.  
3
Conclusion and Proposal

In conclusion, interworking Open ID and Application based on SIP Digest need more clarification. Especially identifier of SSO initiation process has impact on the whole procedures; therefore, the Identifier has to be calarified by group decision. 
2. Related section of this discussion 

************START OF  Section *******************

7.3.2
Solution 2 - Description

7.3.2.1
TBD

Editor’s Note: The solution above and below have some overlap and need to be sorted out, how is for further study.

The solution realizes a SSO function that is available when an IMS UE is authenticated over SIP Digest authentication mechanism. Figure 7.3-1 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.
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Figure 7.3-1 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1.  The UE issues a service request to RP.
Editor’s note: the generation and the form of the identifier is FFS.

Editor’s note: the identifier e.g. IMPI and the transfer of the new credential to the UE are ffs.

2. The RP redirects the UE to the IdP with the RP Authentication Request. The redirected request includes  the RP identifier (RP_credential).

3.  Following this redirection the UE sends a HTTP request to the IdP with the UE authentication request. The request includes the UE identifier (U_credential).
Editor’s Note: It is FFS how the RP can redirect the UE to the IdP(SSO) if the UE does not provide any identifier to the RP.
4. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step. 

NOTE 1:
The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages. 

5. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5]. 

9. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

10. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. The IdP stores the authentication conclusion (UE_Auth). If the UE is successfully authenticated, the IdP generates the shared secret K0 based on the H(A1), the cnonce, etc. 

11. The IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using  Kr,i, i.e. EKr,i (K1,UE_Auth).

12. The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) with redirection.

13. The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP, else the UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

15. The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1. 

16. After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.
NOTE 2:
The last 3 steps16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 15 – the authentication procedure stops.
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