1

3GPP TSG-SA3 (Security)
S3-110448
SA3#63, 11.-15. April 2011, Chengdu, China

Source:
InterDigital
Title:
pCR to propose details for RP authentication to the solution in section 7.3.2 of TR 33.914
Document for:
Discussion and approval

Agenda Item:
8.4
Work Item / Release:
IMS / Rel-11
1. Introduction

This contribution provides an additional improvement to the authentication protocol for interworking of SIP-Digest based SSO with OpenID, described in in section 7.3.2. The current solution in section 7.3.2 summarily refers to ‘authentication of RP by OP’ but does not provide any details. The proposed change in the current document describes in detail, how RP authentication may be obtained by use of OpenID association secret.
We propose that SA3 review and approve the proposed changes.
2. Background

At SA3#62, S3-110176 was agreed and some corrections were made to the call flow in section 7.3.2 of TR 33.914 describing the interworking of SIP Digest with OpenID. These agreed changes have later been reflected into the current draft version of TR 33.914, i.e., S3-110206.
Despite these corrective changes, the current protocol description is lacking of details of RP authentication, which is only summarily refered to in the current protocol description. That is, although the possibility of RP authentication was mentioned and the call flow depiction in 7.3.2 pre-supposes the use of RP authentication, it was never clearly understood how RP authentication may be done by the OP in the context of OpenID.
In the current pCR, we propose an alternative call flow to that of 7.3.2, which provides detasil of RP authentication based on use of OpenID association secret.
3. pCR

The following pCR is against S3-110206, the current draft of the 3GPP TR 33.914 “Single Sign On Application Security for Common IMS—based on SIP Digest”.

**************************** start of the change *****************************

7.3.2
Solution 2 - Description
Editor’s Note: The solution above and below have some overlap and need to be sorted out, how is for further study.

The solution realizes a SSO function that is available when an IMS UE is authenticated over SIP Digest authentication mechanism. Figure 7.3-4 shows the message flow of the authentication process to realize SIP Digest-based SSO with the Common IMS in the UICC-less environment.

[image: image1.emf]UE

RP(Application

Server)

IdP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K0;Calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse

with response;obtain UE authentication

result UE_Auth;Generate K0

1.Request

U_credential

2.Redirect request to IdP

U_credential,RP_credential

3.Redirected request to IdP

U_credential,RP_credential

5.Get SD-AV&user profile

based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

14.Redirected to RP

EKr,i(K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain

RP_Auth result and nonce1;generate K1

Establishment of

shared secret Kr,i

11.Generate nonce1 and then generate

K1;K0 encrypts nonce1and RP_Auth；

EK0(nonce1,RP_Auth);EKr,i(K1,UE_Auth)

15.Decrypt EKr,i(K1,UE_Auth),obtain UE_Auth and K1

17.Notify

EK1(UE_Author)

18.Decrypt EK1(UE_Author);

access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

Figure 7.3-4 authentication process of SIP Digest-based SSO with the Common IMS

The basic steps are as follows:

1. The UE issues an authentication request to RP which includes the UE identifier (U_credential).
Editor’s note: the generation and the form of the identifier is FFS.

Editor’s note: the identifier e.g. IMPI and the transfer of the new credential to the UE are ffs.

2. The RP redirects the authentication request sent by the UE. The redirected request includes U_credential and the RP identifier (RP_credential).

3. The authentication request is redirected to the IdP.

4. The IdP authenticates the RP based on the RP_credential and generates related authentication result RP_Auth. According to the U_credential, the IdP first checks whether there is already a shared secret K0 between the UE and IdP. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE: The RP and the IdP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and IdP are out of scope. With this shared secret the IdP can sign subsequent messages and the RP can verify those messages.

5. The IdP sends authentication request to the HSS, it then obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the IdP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The IdP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The IdP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].

9. The UE sends a response to the IdP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and digest-url.

10. Upon receiving the response, the IdP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the IdP calculates the expected response (Xresponse) using the previously stored H (A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful, the authentication of the UE is succeeded, else the authentication fails. The IdP stores the authentication conclusion (UE_Auth). If the UE is successfully authenticated, the IdP generates the shared secret K0 based on the H(A1), the cnonce, etc.

11. The IdP generates a random nonce1 and generates a shared secret K1 based on K0 and nonce1. The IdP encrypts the nonce1 and RP_Auth using K0, i.e. EK0(nonce1,RP_Auth); and encrypts the K1 and UE_Auth using Kr,i, i.e. EKr,i (K1,UE_Auth).

12. The IdP sends the UE an message including EK0(nonce1,RP_Auth) and EKr,i (K1,UE_Auth) with redirection.

13. The UE decrypts the EK0(nonce1,RP_Auth) and then obtains RP_Auth and nonce1. Based on the RP_Auth the UE knows the legitimacy of the requested RP. If the authentication result indicates that the RP is not valid, the UE will stop visiting the RP, else the UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the IdP is redirected to the RP including EKr,i (K1,UE_Auth).

15. The RP decrypts the EKr,i (K1,UE_Auth), and obtains UE_Auth and K1.

16. After verifying the UE_Auth, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.
NOTE: The last 3 steps16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.

If there is a failure in steps 1 through 15 – the authentication procedure stops.
The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance. The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8]. In the following a message flow of the authentication process is defined to allow the interworking of the SIP Digest-based SSO with the OpenID [14].

[image: image2.emf]UE

RP(Application

Server)

OP(SSO)

HSS

6.Generate nonce;

store nonce and H(A1)

8.Generate cnonce,H(A1)

and K0;calculate response;

10.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K0

1.AuthnOpenID request

OpenID identifier

2.Redirect request to OP

OpenID identifier;RP_credential

3.Redirected request to OP

OpenID identifier;RP_credential

5.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

9.Response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP

EK0(nonce1,RP_Assert);EKr,o(K1,UE_Assert)

14.Redirected to RP

EKr,o(K1,UE_Assert)

4.Authentication RP and genarate RP

authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain

RP_Assert and nonce1; genarate K1

Establishment of

shared secret Kr,o

11.Generate nonce1 and then generate

K1;K0 encrype nonce1andRP_Assert；

EK0(nonce1,RP_Assert);EKr,o(K1,UE_Assert)

15.Decrypt EKr,o(K1,UE_Assert),obtain UE_Assert and K1

17.Notify

EK1(UE_Author)

18.Decrype EK1(UE_Author);

access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

Figure 7.3-5 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

2. The RP redirects the authentication request sent by the UE which includes the OpenID identifier and the RP identifier (RP_credential).

3. The authentication request is redirected to the OpenID identity provider (OP)

4. The OP authenticates the RP based on the RP identifier. Assuming RP authentication success, the OP checks whether there is already a shared secret K0 between the UE and the OP according to the OpenID identifier. If K0 exists, the process jumps to step 11; otherwise, the process goes on to the next step.

NOTE: The RP and the OP shall have a shared secret (Kr, o) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

NOTE: The OP is the sole decision point for RP’s authenticity, and this means that any explicit messaging, e.g. to the UE, regarding the OP’s decision on the authenticity of the RP, is redundant and unnecessary.
NOTE: There may be security concerns if this message (about OP notifyin the UE about failure of OP authentication of the RP) is sent unprotected.
5. The OP sends authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617 [5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

6. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

7. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

8. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
9. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

10. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

11. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert).

12. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1,UE_Assert) with redirection.

13. The UE decrypts the EK0(nonce1); and then obtains the nonce1; The UE will generates the shared secret K1 based on K0, nonce1.

14. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

15. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1.

16. ‘After verifying the UE_Assert, the RP generates authorization information for the UE, i.e. UE_Author and encrypts UE_Author using K1 EK1(UE_Author).

17. The RP notifies the UE about the authorization information.

18. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

NOTE: The last 3 steps 16, 17 and 18 are application specific, they are optional steps and not required for SSO authentication purpose.
If there is a failure in steps 1 through 18 – the authentication procedure stops.

Editor’s Note: It should be marked, for each of the steps of the description for the protocol depicted in Figure 7.3-5, which element of the description complies to OpenID specification, and which element is beyond the scope of OpenID specification.
Editor’s Note: The aspects of providing keys for general application security between a terminal and application server, not only for interwoking with OpenID, should be also taken into account in the solution.

Note: The interworking with the Liberty Alliance is similar to the interworking with the OpenID.

33.914 Contains contributions of ZTE for interworking with SIP Digest. This protocol, contained in Figure 7.2-5, adds the feature of RP authentication to OpenID authentication of UE, which in turn is bootstrapped from SIP Digest authentication.

7.3.2.2
Solution 2 – Improvements with details of RP authentication
Achieving RP authentication at the OP

The protocol depicted in Figure 7.3-5 does not show how RP authentication can be achieved. Particularly, it is not clear whether and how RP uses any secret in the steps 1-4 towards the OP. In order to achieve RP authentication, additional steps need to be considered. If we assume that the OP and RP already share a secret Kr,o this secret has to be used for RP authentication with the OP. Not shown in the protocol figure 7.3-5 are the association creation steps of the OpenID protocol.

Note that the inclusion of RP authentication in the OpenID protocol requires changes to the OpenID protocol itself as well as to the implementations of the OP and RP. Thus, any such change should be carefully weighed for benefits versus the cost. Moreover, it is desired that any such RP authentication method should NOT affect implementations on the UE.

In general RP authentication will consist in a challenge response step between OP and RP, where the OP has to send a challenge with a proof of freshness to the RP, e.g. via a nonce. The RP can then use the pre-established shared secret Kr,o to sign this nonce and return the answer to the OP. The response to the authentication challenge can be as a direct response to the OP authentication challenge, or can be integrated in the redirect message, which sends the UE to the OP. In either case it needs to be ensured that the OP can have reliable evidence on the authentication of the RP before engaging in actual UE authentication. This allows to stop the protocol in the case of a failed RP authentication, and saves communication effort between UE and OP in the case of such a failed RP authentication. The OP can then directly convey the information on the failed RP authentication to the UE.

Using Associations for RP authentication

If the RP establishes an association with the OP, the OpenID association protocol can be slightly modified to incorporate a challenge from the OP to be conveyed to the RP for the purpose of RP authentication.

During the association establishment the OP and RP can set up a message authentication code (MAC) key which is later used to sign the assertion message. This key is sent encrypted using a temporary secret key which is negotiated between OP and RP using Diffie-Hellman (DH). In addition to that key, deviating from the OpenID specs, the OP can include a nonce, also encrypted with the DH-key, in the response to the RP.

The RP can then decrypt the nonce and the MAC key based on the negotiated DH-key. The RP then uses its own pre-established Kr,o key to sign (or encrypt) the nonce as received from the OP and adds it as an additional parameter to the redirect message which is sent to the UE. Since the UE follows the redirect to the OP, the OP receives the signed (or encrypted) nonce, and can use the shared key Kr,o to authenticate the RP. In the case of a failed authentication, the OP can send an alert message to the UE to protect it from unauthenticated RPs. In the case of a successful RP authentication, the OP can proceed with the protocol.

Simplified Variant Protocol with RP authentication and HTTPS protection

The following Figure 7.3-6 depicts a revised protocol where the RP is authenticated by the OP using a modified OpenID association messaging

[image: image3.emf]UE

RP(Application

Server)

OP(SSO)

HSS

12.Generate nonce;

store nonce and H(A1)

14.Generate cnonce,H(A1) and

K0;calculate response;

16. Check challenge response; calculate K0

1.AuthnOpenID request

OpenID identifier

5.Redirect request to OP, including signed

nonce0, & OpenID identifier;RP_credential

6. Redirected request to OP

OpenID identifier;RP_credential

11.Get SD-AV&user

profile based on U_credentials

15. Challenge response (optionally using HTTPS)

13. SIPDigest Auth Challenge (optionally using HTTPS)

19. redirect UE to RP,

incl. encrypted nonce1, K1,and signed

UE_Assert.

21.Redirect to RP EKr,o (K1,

signed UE_Assert)

Pre-establishment of

shared secret Kr,o

18. generate nonce1; calculate K1based on

nonce1 and K0. Encrypt nonce1 withK0.

EncryptK1with Kr,o

20. Decrypt nonce1 using K0;

generate K1

22. decrypt K1And UE_assert using Kr,o;

Verify signature of UE_Assert;

23. Create UE_Author and encrypt with K1

24.Notify

EK1(UE_Author)

25.decrypt EK1(UE_Author)

9. Is RP authenticated?

10. Does a

valid K0exist?

9b. unsuccessful RP authentication: send alert

message to UE (optionally over HTTPS)

no

yes

no

yes

2. Association request

3. Association response, including

encrypted association secret and

encrypted nonce0

4. Decrypt nonce0 and association

secret; sign nonce0 using Kr,o

7. (optional) use of HTTPS for

protection of OP to UE

communication

8. Verify MAC signature on

nonce0 to authenticate RP

17. create UE_Assert, signed using association secret

 Figure 7.3-6 authentication in interworking of the SIP Digest-based SSO with the OpenID, with RP authentication
The steps of this variant protocol are as follows:

1. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

2. The RP sends an (OpenID) association request to the OP. The RP and the OP then establish a Diffie-Hellman Key D-H, according to Section 8 of [14]. OP generates an association secret and association handle (together called association according to [14]).

3. The OP sends RP an association response according to [14], Section 8.2, including association secret and nonce0, both encrypted with the D-H key established in step 3..
4. The RP decrypts the received encrypted nonce0 and encrypted association secret, and signs nonce0 with Kr,o.
NOTE: HMAC or another suitable symmetrical signature algorithm may be used to sign nonce0

NOTE: The RP and the OP shall have a shared secret (Kr, o) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

5. The RP redirects the authentication request sent by the UE which includes the OpenID identifier, the RP identifier (RP_credential), and the signed nonce0.

6. The authentication request is redirected to the OP. The redirection includes OpenID identifier and RP_credential.

7. (Optionally) The OP may set up TLS and initiates HTTPS communiation with UE. This could be done by configuration of the OP web server.

8. The OP verifies the signature of nonce0 to authenticate the RP.

9. If RP authentication of step 9 failed, the OP sends an alert message 10b, (optionally protected by HTTPS if step 7 is taken), to indicate RP authentication failure, to the UE. If RP authentication in step 9 succeeded, proceed to step 11.

10. The OP determines if a valid key K0 exists. If the answer is no, proceed to step 11. If yes, proceed to step 17.
11. The OP sends authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617 [5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

12. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

13. The OP sends, optionally protected by HTTPS, a 401 Auth_Challenge (as a SIP-Digest Auth challenge) to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

14. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
15. The UE sends a challenge response, optionally protected by HTTPS, to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

16. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.
17. The OP creates an authentication assertion (UE_Assert) signed using the association secret (from step 3 above).

18. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and the signed UE_Assert using Kr,o, i.e. EKr,o (K1, signed(UE_Assert)).

19. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1, signed(UE_Assert)) with redirection to RP.

20. The UE decrypts the EK0(nonce1); and then obtains the nonce1; The UE will generates the shared secret K1 based on K0, nonce1.

21. The message sent by the OP is redirected to the RP including EKr,o (K1,signed UE_Assert).

22. The RP decrypts the EKr,o (K1, signed UE_Assert), and obtains UE_Assert and K1. RP verifies signature of UE_Assert using the association secret shared with OP.

23. After verifying the UE_Assert, the RP generates an authorization information for the UE, i.e. UE_Author and encrypt UE_Author using K1 EK1(UE_Author).

24. The RP notifies the UE about the authorization information, which is contained in this message, encrypted with K1.

25. The UE decrypts the EK1(UE_Author) and then accesses to the requested service.

**************************** end of the change *****************************
3GPP

_1361622972.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

1.AuthnOpenID request
OpenID identifier

2.Redirect request to OP
OpenID identifier;RP_credential

3.Redirected request to OP
OpenID identifier;RP_credential

5.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

14.Redirected to RP
EKr,o (K1,UE_Assert)

4.Authentication RP and genarate RP authenticate assertion;check of K0

13.Decrypt EK0(nonce1,RP_Assert);obtain
RP_Assert and nonce1; genarate K1

Establishment of shared secret Kr,o

11.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

_1363290610.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

12.Generate nonce;
store nonce and H(A1)�

14.Generate cnonce,H(A1) and K0;calculate response;

16. Check challenge response; calculate K0

1.AuthnOpenID request
OpenID identifier

5.Redirect request to OP, including signed nonce0, & OpenID identifier; RP_credential

6. Redirected request to OP
OpenID identifier;RP_credential

11.Get SD-AV &user
profile based on U_credentials

15. Challenge response (optionally using HTTPS)

13. SIPDigest Auth Challenge (optionally using HTTPS)

19. redirect UE to RP,
incl. encrypted nonce1, K1 , and signed UE_Assert.

21. Redirect to RP EKr,o (K1, signed UE_Assert)

9. Is RP authenticated?

20. Decrypt nonce1 using K0; generate K1

Pre-establishment of shared secret Kr,o

18. generate nonce1; calculate K1 based on nonce1 and K0. Encrypt nonce1 with K0. Encrypt K1 with Kr,o

22. decrypt K1 And UE_assert using Kr,o;  Verify signature of UE_Assert;
23. Create UE_Author and encrypt with K1

24. Notify
EK1(UE_Author)

25. decrypt EK1(UE_Author)

10. Does a
valid K0 exist?

9b. unsuccessful RP authentication: send alert message to UE (optionally over HTTPS)

no

yes

no

yes

2. Association request

3. Association response, including encrypted association secret and encrypted nonce0

4. Decrypt nonce0 and association secret; sign nonce0 using Kr,o

7. (optional) use of HTTPS for protection of OP to UE communication

8. Verify MAC signature on nonce0 to authenticate RP

17. create UE_Assert, signed using association secret

_1357715538.vsd
�

UE�

RP(Application Server)�

IdP(SSO)�

HSS�

6.Generate nonce;
store nonce and H(A1)�

8.Generate cnonce,H(A1) and K0;Calculate response;

10.Check against nonce;calculate Xresponse and compare Xresponse with response;obtain UE authentication result UE_Auth;Generate K0

1.Request
U_credential

2.Redirect request to IdP
U_credential,RP_credential

3.Redirected request to IdP
U_credential,RP_credential

5.Get SD-AV&user profile
based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

9.Response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

7.401 Auth_Challenge
U_credential,nonce,realm,qop,algorithm

12.Redirect UE to RP
EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

14.Redirected to RP
EKr,i (K1,UE_Auth)

11.Generate nonce1 and then generate K1;K0 encrypts nonce1 and RP_Auth；EK0(nonce1,RP_Auth);EKr,i (K1,UE_Auth)

4.Authenticate RP ;check K0

13.Decrypt EK0(nonce1,RP_Auth);obtain
RP_Auth result and nonce1;generate K1

15.Decrypt EKr,i (K1,UE_Auth),obtain UE_Auth and K1

Establishment of shared secret Kr,i

17.Notify
EK1(UE_Author)

18.Decrypt EK1(UE_Author);
access to the requested service

16.Authorized information for UE UE_Author;EK1(UE_Author)

