SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — SA3#63
S3-110511
11 April – 15 April 2011
Chengdu , China P.R.
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Comments to GBA Lite (S3-110501)
Document for:
Discussion and decision

Agenda Item:
8.5 Study on Security aspects of Integration of Single Sign-On (SSO) frameworks with 3GPP network
Work Item / Release:
FS_SSO_Int_Sec / Rel-11
1 Introduction
The following pseudo CR describes an optimized implementation of GBA and OpenID interworking with minimal operator impact. The solution provides an interesting alternative for operators seeking to deploy SSO services but hesitate to deploy all features of GBA.

The main difference between GBA Lite and the original GBA and OpenID interworking is the optimized BSF and the co-location of BSF and OP/NAF. Since all interfaces except for BSF-OP/NAF interface are left unmodified, clients and service providers will continue to operate as with normal GBA - OpenID interworking. Later on, if an operator finds a need to support other applications as well, GBA Lite can be extended to full GBA.
For the reader’s convenience, the key points have been summarized below.

· Identical to original GBA and OpenID interworking (TR 33.924).

· No specification changes necessary. An implementation optimization is achieved by co-locating BSF and OP (NAF). There is no need to implement the Zn interface between BSF and OP (NAF) for the SSO specific optimization.
· No changes to terminals or Relying Parties (web services)
· Possible to upgrade to full GBA in the future, in principle, yes, but with the optimization detailed in clause 8.2.2.2 “upgrading” will be more difficult, cf. our comments there
· Reduced CAPEX (development, deployment) and OPEX (operational)
2 Proposal
We propose to adopt the below PCR into the SSO TR.
3 PCR
8.2
GBA Lite
8.2.1
Rationale for solution

Currently, from an operator standpoint, the most promising application of GBA is SSO. However, the SSO business case may not on its own be strong enough to motivate the initial deployment cost. An SSO specific implementation option of the GBA – GBA Lite – requiring a lower investment is therefore an interesting alternative. Later on, if an operator finds a need to support other applications as well, the SSO specific version can be extended to full GBA.

The solution presented here closely follows the GBA and OpenID interworking described in 3GPP TR 33.924. The difference is that the BSF and OP are co-located and hence the Zn interface is a matter of internal implementation detail. This results in a simpler and cheaper implementation. All other nodes and interfaces remain unchanged.

The design goals for GBA Lite were the following:

· A simple migration path to use of full GBA

· The Client and RP (Relying Party) shall follow TR 33.924 (i.e. Client and RP are unaffected)
· Aim for simplicity: keep only the core BSF functionality, remove the rest.
· The solution should not require any BSF database (i.e. a stateless BSF)
8.2.2
Solution description
8.2.2. 1
Architecture

The architecture is identical to 3GPP TR 33.924 Figure 4.3-1 except for that the BSF and OP are co-located, and hence there is no need to implement the Zn interface. Instead internal, optimized interface between the functions can be implemented.

[image: image1.emf]BSF

HSS

UE

RP

Zh

Ub Ua

OP

(NAF)

HTTPS

HTTP & DH

Figure 8.2.2.2-1 GBA Lite Network Architecture
For the P-CR formatting issues: The figures in this contribution have a numbering problem
8.2.2. 2
BSF-OP Implementation
No GUSS handling

In ordinary GBA the BSF has to support a wide range of applications with varying options and permissions. In GBA Lite, however, there is only one application: OpenID. This allows us to simplify both the handling of keys and of GBA user security settings (GUSS).
Key handling is simplified since we only need to deal with OpenID specific keys
Could you clarify what is meant with OpenID specific?

. For example, the NAF identifier used in the key derivation can be static instead of dynamically determined at the run of the Zn protocol.
This is possible, but would exclude any co-hosting of different IdPs e.g. for Liberty and OpenID and also exclude different NAF URLs. If that is the intention, it would be good if that was mentioned.
The information contained in the GUSS (key lifetime, UICC type, MSISDN etc) can either be statically encoded (key lifetime) or stored as part of the OpenID user account (UICC type, MSISDN). It should be noted, that statically encoded data may need to be synchronized with the HSS data periodically to catch events like upgrading from SIM to USIM. Typically, the OP will maintain a user account for each of its users where the OpenID identifier, attributes, and settings are stored.

No BSF database
Traditional GBA requires a separate BSF database to be setup and maintained. In GBA Lite the database can be removed by storing some extra user information at the OP, since an OP database is needed anyway for OpenID related information.

[image: image2.emf]BSF NAF

BSF

Request (B-TID)

Response (Ks_NAF)

OP

Push B-TID, Ks_NAF

GBA Lite

GBA

[Internal API]

Figure 8.2.2.3-1 Example: The BSF database is removed by replacing the Zn interface with a push based internal interface

Normally, the BSF database stores the master key Ks and B-TID resulting from a client bootstrap. The use of a database is necessary since a NAF might request its key over Zn long after the bootstrapping took place. The usage of the Zn interface as an internal would allow an easy extension into a full GBA, for the case that an operator wants later on to deploy more services utilizing GBA lite.
As an implementation specific optimiziation, that is not needed for interworking. The BSF database also can be removed by using a push based interface between the BSF and OP. Once a bootstrapping is finished, the BSF pushes Ks_NAF and B-TID (and possibly other data as well) to the OP. Since BSF and OP are in one element (see figure 8.2.2.3-1) this is an internal interface and not necessary to standardize.
8.2.2. 4
Message Flow

The following message flow is identical to the Direct Interworking Scenario in TS 33.924 except for the B-TID lookup (step 8 below) and a slightly different wording.

[image: image3.emf]RP OP (NAF)

1) Login (identifier)

4) HTTP 302 Redirect https://op.operator.com (identifier)

2) Discover OP

using identifier

5) HTTP 401 Unauthorized

realm="3GPP-bootstrapping@op.operator.com”

7) HTTP GET (username = B-TID, digest)

10) HTTP 302 Redirect https://rp.com (identifier, OpenID assertion)

11) Verify assertion

9) Possibly further interaction

3) (optional) A security association is established between OP and RP

BSF

6) If no valid Ks is available within the UE, bootstrapping is performed

[details are omitted]

8) Look up Ks_(ext/int)_NAF using

B-TID and verify digest

Internal

API

UE

Co-located

Figure 8.2.2.3-1 Interworking message flow for GBA / OpenID

1. The user initiates authentication by presenting a User-Supplied Identifier to the Relying Party via their User-Agent
2. After normalizing the User-Supplied Identifier, the Relying Party performs discovery on it and establishes the OP Endpoint URL that the end user uses for authentication.
3. (optional) The Relying Party and the OP establish an association – a shared secret established using Diffie-Hellman Key Exchange. The OP uses an association to sign subsequent messages and the Relying Party to verify those messages; this removes the need for subsequent direct requests to verify the signature after each authentication request/response.

4. The Relying Party redirects the end user's User-Agent to the OP with an OpenID Authentication request (Requesting Authentication).
5. The OP (NAF) initiates the UE authentication and responds with a HTTPS response code 401 “Unauthorized”, which contains a WWW Authenticate header carrying a challenge requesting the UE to use Digest Authentication with GBA as specified in TS 33.222 with server side certificates.
6. If no valid Ks is available, then the UE bootstraps with the BSF as described in TS 33.220, which results in the possession of the UE of a valid Ks. From this the UE can derive the application specific (OpenID specific) Ks_(ext/int)_NAF key(s).
7. The UE generates a HTTP GET request to the NAF. The HTTP request carries an authorization header containing the B-TID received from the BSF and a response digest.
8. Using the B-TID the NAF retrieves the shared application specific NAF key and validates the response digest.

Note: If the BSF is implemented as stateless, the BSF has stored the NAF specific key in the OP database during bootstrapping (step 6). Since BSF –OP/NAF interface is internal, also other implementations are possible.
9. Possibly further interaction where e.g. the user is made aware that he is logging in to RP with OpenID.
10. The OP redirects the end user's User-Agent back to the Relying Party with either an assertion that authentication is approved or a message that authentication failed.
11. The Relying Party validates the assertion received from the by using either the shared key established during the association or by sending a direct request to the OP. If the validation is successful, then the user is logged in to the service of the RP
8.2.3
Evaluation against findings in SA1 study

3GPP

SA WG3 TD

_1362901280.vsd
UE

BSF

OP
(NAF)

RP

HSS

HTTPS

Zh

Ub

Ua

HTTP & DH

_1362903474.vsd
RP

UE

OP (NAF)

2) Discover OP using identifier

1) Login (identifier)

11) Verify assertion

4) HTTP 302 Redirect https://op.operator.com (identifier)

5) HTTP 401 Unauthorized realm="3GPP-bootstrapping@op.operator.com”

7) HTTP GET (username = B-TID, digest)

10) HTTP 302 Redirect https://rp.com (identifier, OpenID assertion)

6) If no valid Ks is available within the UE, bootstrapping is performed  [details are omitted]

9) Possibly further interaction

3) (optional) A security association is established between OP and RP

BSF

8) Look up Ks_(ext/int)_NAF using B-TID and verify digest

Co-located

Internal  API

_1362402788.vsd

