SA WG3 Temporary Document

Page 1
-

3GPP TSG SA WG3 Security — SA3#63
S3-110502
11 April – 15 April 2011
Chengdu , China P.R.
Source:
Ericsson, ST-Ericsson
Title:
Security Enhancement for Usage of GBA from Browser
Document for:
Discussion
Agenda Item:
8.7 Other Study Areas
Work Item / Release:
TEI11 / Rel-11
1
Motivation
In the last SA3 meeting (SA3#62) there was a proposal describing how GBA could be accessed within a browser using a JavaScript API. The primary benefits of such an API would be:
· Simplicity: Almost any web application based on username/password could start using GBA with a minimum of changes

· Support for legacy users: A web application can support both GBA and non-GBA users with a single authentication method (HTML form)

However, allowing the key to be exposed in JavaScript potentially opens up for a number of new attacks. One such attack is code injection: the attacker finds a way of injecting a malicious script into the web page and steals the key. Whether a web page is susceptible to script injection or not depends on its contents and the security mitigations implemented by the site's owner. While we cannot prevent a code injection attack from occurring (that is the page owner’s responsibility), we can limit its damage by designing the GBA JavaScript API with the attack in the mind.
This contribution proposes one way of limiting the effects of key theft. By ensuring that the key returned by the JavaScript API is context specific the attacker can no longer steal a key in one context and then use it in another. This is accomplished by binding the key to the current web-page, HTTP session, or TLS/SSL session.
2
Discussion
2.1
Problem Statement
Script injection is one of the most common attacks on Internet today and is caused by poor programming practices and permissive security policies. A classic example is the site search engine: if one searches for a string, the search string will typically be redisplayed verbatim on the result page to indicate what was searched for. If this response does not properly escape or reject HTML control characters, a cross-site scripting flaw will ensue.
The problem with the existing proposal is that the key returned by the JavaScript API has a very wide scope. A key stolen by the attacker through script injection remain valid across the entire domain and across different HTTP sessions.

To illustrate this, consider a host naf.com with two web-pages, login.html and vulnerable.html. The first page has been meticulously coded and is in itself invulnerable to any type of attack. The second page, on the other hand, contains a subtle flaw which makes it susceptible to code injection. Realizing this, the attacker injects the following script:
<SCRIPT type="text/javascript">
(B-TID, Ks_NAF) = window.document.getGBAKey();

... upload (B-TID, Ks_NAF) to attacker ...

</SCRIPT>

The next user visiting the page naf.com/vulnerable.html will unknowingly upload his key to the attacker, who will in turn use it to login at naf.com/login.html.
2.2
Proposed Solution

Instead of returning Ks_NAF the API returns a key Ks_NAF’ that is bound to a context parameter P determined by the web server. Unless the value of the parameter is the same when the key is extracted and when it is used, the key will be rejected by the web server. The binding is done using an additional key derivation:
Ks_NAF’ = KDF(Ks_NAF, S(P))
The KDF and the construction of the octet string S = S(P) from the context parameter P are described in more detail in the appendix.
Three possible options for choosing the context parameter are presented below. They can all be implemented with only minor changes to the server and client.
Alt A: Binding the key to the current web page
As previously mentioned, one of the problems with the existing proposal is that the key returned by the API is valid across the entire domain. For example, a key extracted from naf.com/vulnerable.html can later be used to login via naf.com/login.html. This threat is mitigated by binding the key to current web page by setting the context parameter to the path component of the web server URL.

Alt B: Binding the key to the HTTP session
Web-servers typically use session IDs to manage the state of a client across HTTP requests. The session ID is stored in the browser and included in every request – usually in the form of a cookie. By using the Session ID as a context parameter the key is bound to the current HTTP session.
A problem is that different web-server languages tend to use different names for the session ID cookie
. This problem can be avoided by including the name as input in the API function call. Another alternative is to use a standardized cookie carrying a copy of the session ID or some other random value.
It is important that the cookie is marked as http-only
 in order to prevent any client side-script from modifying or extracting its value. The security can be further improved by marking the cookie as non-persistent (a non-persistent cookie is stored in browser memory and is deleted upon exit).

Alt C: Binding the key to the TLS/SSL session
Some secure sites (banks etc) use the TLS/SSL Session ID instead of cookies to keep track of sessions. In this case the entire HTTP session (all HTTP requests and responses between browser and web-server) occurs within a single TLS/SSL session. However, session tracking via TLS/SSL is uncommon due to a number of reasons:

· Some web servers do not support it (the HTTP layer is largely independent of TLS/SSL layer)

· Some larger sites use TLS/SSL offloading for performance reasons. In this case TLS/SSL management is handled by a separate server (with special purpose hardware) in front of the web server.

· Browsers do not always behave as one would expect. Browsers often limit the number of open connections (e.g. max n connections per tab and m connections in total) and handle timeouts differently.

For web sites that support it, binding the key to the TLS/SSL session is a good way of limiting the effects of key theft. This is accomplished by using TLS\SSL Session ID or master_secret as a context parameter. Using the master_secret instead of the Session ID might be more secure, but extracting this value probably requires changes to the TLS/SSL implementation.
3
Summary
This contribution described a more secure way of using GBA within a browser. By returning a key that is context specific instead of general, a stolen key becomes effectively useless for the attacker. Three possible context parameters were presented:

A. the path component of the web page URL

B. the Session ID cookie or some other (http-only) cookie sent from the web server

C. the TLS/SSL Session ID or master_secret
We kindly ask SA3's opinion on the described counter-measure and instructions how to go forward with this proposal.
Annex A: Key derivation
A.1
Key derivation function and construction of S
Although there are many options for choosing the key derivation function KDF and the construction of S, re-using the ones defined in GBA might offer some implementational benefits.

Appendix B.2 of TS 33.220 specifies the KDF as

KDF(key, S) = HMAC-SHA-256(key, S)

and the construction of the octet string S from the n context parameters as
S = S(P1, …, Pn) = FC || P1 || L1 || … || Pn || Ln

where

FC=0x01 is a single octet used to distinguish different instances of the algorithm,

P1, … , Pn are the n context parameter encodings, and
L1, …, L2 are the lengths of the corresponding context parameter encodings.
It should be noted that the indexation of n input parameters used above differs from the indexation of n+1 input parameters used in Appendix B.2 of TS 33.220 (the “gba-me” or ”gba-u” parameter is not present above).

A.2
Ua security protocol identifier
Recall that the Ua security protocol identifier is used in the construction of NAF_ID, which in turn is used as input in the derivation of Ks_NAF.

NAF_ID = FQDN || Ua security protocol identifier

In the existing SA3 proposal the Ua security protocol identifier is constructed as (0x01,0x00,0x01,yy,zz) where yy and zz depend on the TLS ciphersuite. However, due to the reasons listed in Alternative C on the previous page, it is preferred if the Ua security protocol identifier is independent of any particular TLS/SSL session. A straight-forward, alternative solution is to define a separate identifier only for JavaScript, e.g. (0x01,0x00,0x00,00,07).

� Examples of the names that some programming languages use when naming their cookie include JSESSIONID (JSP), PHPSESSID (PHP), and ASPSESSIONID (Microsoft ASP).

� http-only cookie is still in IETF draft, though most of the modern browsers support it

3GPP

SA WG3 TD

