3GPP TSG-SA3 (Security)
S3-110107
SA3#62, 24 – 28 January, 2011; Ljublijana, Slovenia
revision of S3-11xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
GBA usage with Web Browser
Document for:
Discussion
Agenda Item:
GBA
Work Item / Release:
TEI Rel-11
Abstract of the contribution: This tdoc describes GBA usage from within web browser.

1
Motivation
The most used authentication method in the Internet today is HTML FORM based authentication. It is used with web browser where a login page is downloaded over HTTPS and which contains an HTML FORM with at least 'username' and 'password' fields. We have also observed that interest of using GBA has increased significantly.
The current mechanism how GBA could be used from web browser is to use GBA with HTTP Digest as specified in clause 5.3 of 3GPP TS 33.222. In this case, the GBA enabled web server can detect whether the web browser is able to perform GBA with HTTP Digest by examining the "User-Agent" header. If "3gpp-gba" product token is present in this header, then the web browser (NAF) is able to perform GBA with HTTP Digest with the web browser (UE). However, HTTP Digest has one general drawback. In current implementations, once web browser has started to use HTTP Digest with a particular web server, it continues to use it until the browser instance is terminated. This is common behavior in web browsers today. This means that there is no way of doing a logout as browser keeps on sending the HTTP Digest headers back to the web server. Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not straight forward as the authentication happens in different layers of protocols.
In order to simplify the usage of GBA in web browser we propose to enable access to GBA in HTML layer, namely using javascript. In simplest case, the HTML FORM could be populated with B-TID as username and the NAF specific key as password using javascript.
2
Discussion

2.1
Use case
End user wants to use some service provider’s services (e.g., an operator), and the service provider wants to use GBA to authenticate the user.
1)
End user opens web browser application in the UE, and instructs it to go the service provider’s web page. The web page redirects the web browser to a login page if end user has not yet authenticated.
2)
Service provider’s login page has logic to discover whether javascript access to GBA is enabled in the browser or not (can be done with javascript). If GBA is not supported, the web page reverts to other means of authentication, e.g., legacy username/password. If GBA is supported, we go to step 3.

3)
The web page has code implemented in javascript that obtains a NAF specific key and the B-TID from the GBA function in the UE. In simplest case, the browser uses these variables as username and password in an HTML FORM, and instructs the web browser to send this information back to the web server.

4)
The web server extracts the NAF specific key and the B-TID, and uses B-TID to fetch the NAF specific key from the BSF over Zn interface. The BSF compares the received NAF specific key from the BSF with the one received from the UE. If they are equal, end user is authenticated, and the requested service is provided to the UE and the end user.
2.2
Threats
The usage like the above is susceptible to two serious threats:
Threat 1:
UE downloads a web page from an attacker that has javascript which requests all NAF specific keys that is interested in.

To mitigate this threat, the web browser should limit web page to access only to those NAF specific keys that belong to origin web server. This way javascript has access only to one NAF’s keys, and the NAF identified by the origin of the web server. All web browsers currently implement a single-origin policy where the javascript is able to send HTTP requests only to the server from where the original web page came from.

Threat 2:
UE uses a public access point that is controlled by attacker, i.e., classic man-in-the-middle attack. When the UE request the login page from the service provider, the attacker sends back a rogue login web page as it controls the DNS. This rogue login page has javascript that is able to extract any NAF specific key of the service provider, and send it back to the attacker.
To mitigate this threat, HTTPS, i.e., server authenticated TLS should be used. This way attacking DNS does not help the attacker as the origin of the web page is authenticated using TLS.
2.3
Key derivation
In order to ensure the key separation in the HTML FORM based authentication in Ua reference point, both the FQDN and a Ua security protocol identifier for the NAF_ID needs to be specified.
FQDN

Web browser and ME vendors should check that when a javascript requests the NAF specific key that the used FQDN in NAF_ID matches the FQDN of the origin of the web page that has the javascript. The FQDN should also be present in the TLS server certificate. Thus, UE should be required to do this check. Implementation wise it is the web browser that has to do this check in the UE.
Ua security protocol identifier

Since HTML FORM is tunneled through TLS, one possibility is to use the Ua security protocol identifier for Ua security protocols that are based on TLS (HTTP Digest with HTTPS and Pre-shared key TLS) that is already specified in Annex H of 3GPP TS 33.220: (0x01,0x00,0x01,yy,zz), where yy and zz are the protection mechanism CipherSuite as specified in relevant TLS specifications by IETF. However, the HTML FORM based authentication within TLS is significantly different from this Ua security protocol identifier where the NAF specific key is used as a password in the (TLS tunneled) HTTP Digest case compared to HTML FORM case where the NAF specific key is transfered in plain text inside the TLS tunnel. Therefore it is recommended to specify a new Ua security protocol identifier for Ua protocols that transfer the NAF specific key in plain text inside a TLS tunnel, e.g., (0x01,0x00,0x02,yy,zz), where the third octet (0x02) would distinquish this case from other protocols tunneled inside TLS.
 The last two octets (yy,zz) would specify to used TLS ciphersuite.
2.4
Javascript API for GBA
In order to ensure interoperability between different web browser and ME vendors, the Javascript API for GBA should be specified. A potential description for Javascript API for GBA is provided in the annex of this discussion paper.
3
Summary
This paper presented a new use case for GBA, how to use GBA in HTML FORM based authentication. To enable this use case, the following changes would be needed in 3GPP specifications:
1)
Add a new clause to 3GPP TS 33.222 to describe the HTML FORM based authentication use case (normative)

2)
Add a new Ua security protocol identifier to Annex H of 3GPP TS 33.220 (normative)
-
(0x01,0x00,0x02, yy, zz): plain text transfer of NAF specific key in server authenticated TLS tunnel
3)
Add a a new informative annex to 3GPP TS 33.222 to describe the Javascript API for GBA and usage examples
We kindly ask SA3's opinion on the described use case and instructions how to go forward with this proposal.
Annex A: Javascript API for GBA
A.1
API description

Below is an example how javascript based GBA API could be specified:
[NoInterfaceObject]

interface DocumentGBA {

 readonly attribute GBA gba;

};
Document implements DocumentGBA;

[NoInterfaceObject]

interface GBA {

 void getGBAKey(in GBACallback successCallback,

 in optional GBAErrorCallback errorCallback,

 in optional GBAOptions options);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBACallback {

 void handleEvent(in GBAKeyInfo keyinfo);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBAErrorCallback {

 void handleEvent(in GBAError error);

};

[Callback, NoInterfaceObject]

interface GBAOptions {

 attribute boolean forceBootstrap; // force bootstrapping; default false

};

// The NAF_ID is determined by the web browser. The FQDN is taken from the origin URL
// of the web page that has the javascript. The Ua security protocol identifier is

// (0x01,0x00,0x02,yy,zz) where the yy,zz is CipherSuite in the used TLS tunnel (HTTPS).

// If TLS tunnel was not used, (0xFF, 0xFF, 0xFF, 0xFF, 0xFF) is used as Ua security

// protocol identifier. The latter case is not specified in 3GPP and it should only be

// used for testing purposes.

interface GBAKeyInfo {

 readonly attribute DOMString key; // base64 encoded GBA key: Ks_(ext)_NAF

 readonly attribute DOMString btid; // B-TID

 readonly attribute long bootstrapTime; // Bootstrap time; millisecs since 1.1.1970

 readonly attribute long expiryTime; // Key expiry: millisecs since 1.1.1970

 readonly attribute DOMString fqdn; // used FQDN

 readonly attribute DOMString uaSecProtId; // base64 encoded Ua security prot. id;

};

interface GBAError {

 readonly attribute unsigned short code; // error code (to be specified)

 readonly attribute DOMString message; // textual description of the error

};

A.2
API usage

Below is an example how to use javascript based GBA API:

// Basic example of requesting GBA key

document.gba.getGBAKey(gbaSuccess,gbaError);

function gbaSuccess(keyinfo) {

 // gba key was successfully created, and for example use

 // keyinfo.btid as username and keyinfo.key as password

}

function gbaError(error) {

 // an error occured during gba key creation

}

�	Whenever a new Ua protocol is specified where the client authentication is performed inside a server authenticated TLS tunnel, and the client authentication is based on a protocol (inside a TLS tunnel) not covered by the existing Ua security protocol identifiers, then a new identifier should be specified. In general, this kind of Ua security protocol identifier could be in the form where the used TLS ciphersuite is indicated the same way as above (last two octets of the identifier), and the used client authentication protocol by (subset) of the remaining octets (second and/or third octet).

