1

3GPP TSG-SA3 (Security)
S3-110055
SA3#62, 24.-28. January 2011, Ljubljana, Slovenia

Source:
Interdigital
Title:
pCR to propose corrections to section 7.2.1 in TR 33.914
Document for:
Discussion and approval

Agenda Item:
8.4
Work Item / Release:
IMS / Rel-11
1. Introduction

This contribution provides two changes which serve as correctives to the authentication protocol for interworking of SIP-Digest based SSO with OpenID, described in in section 7.2.1: 1) to make the OP the single decision point for RP trustworthiness and provide an HTTP response to the request message in step 4 immediately following step 5 in the event of an RP authentication failure; 2) to indicate that steps 17 and 18 are application specific and that an HTTP response is required in all cases at a minimum.
We propose that SA3 review and approve the proposed changes.
2. Background

Regarding the first proposed change to the protocol descried in section 7.2.1 (Solution 2), it is desired that the OP be the single decision point for RP trustworthiness. Thus it is proposed here that, in case of RP authentication failure, the OP should notify the UE, via HTTP, and terminate any further protocol process immediately following step 5. In this case the response message could contain content indicating that the authentication of RP has failed and that the protocol is to be terminated. The browser could also dislay such content to the user. In the current protocol step 8, the UE receives the HTTP response with the authentication challenge, where it is not clear what the status is of RP trustworthiness. The RP_Assert message, however, is not evaluated until step 14. On the other hand, it is stated at the end of the protocol desdription that the procedure should stop if any failure occurs. So we propose to improve the efficiency and save bandwidth, by having the OP alert the UE with information indicating the failure of RP authentication in an earlier step, so that steps 7 - 14 may not need to be executed and hence do not consume bandwidth or put unnecessary burden on the UE and OP in the event of an RP authentication failure in an earlier step.

Also, according to the description, the protocol procedure shall go on if and only if there is no authentication failure of the RP in step 5. Hence, there is implicit knowledge for the UE that the RP authentication has been successful at the time that the UE receives the authentication challenge. To reduce traffic, we propose to remove the redundant information RP_Assert, since this information is not used by the UE for any other purpose. Given the enhanced authentication role played by the OP with respect to the RP the RP_Assert is unnecessary.
The original steps 17 and 18 (also part of step 16) are considered in this corrective contribution to be application specific and thus should be stated as such in the TR. After a positive evaluation of the UE_Assert by the RP in step 16, the UE is effectively authenticated at the RP. Compared to the OpenID protocol as specified in the OpenID standards [1], any following steps are application specific for the RP. While there might be services which require setting up an additional token between RP and UE, this cannot be a general assumption. Hence, these steps should be clearly marked as optional. The optional nature of the need or use of the UE_Author information by the UE is not clearly explained in the protocol description, so more information is needed. Whether in a protocol requiring special UE and RP cryptographic capabilities or in a more generic setting, a response by HTTP is needed at a minimum. Such a reponse is required relative to both of the decribed changes.
3. pCR

The following pCR is against S3-xxxxxx, the current draft of the 3GPP TR 33.914 “Single Sign On Application Security for Common IMS—based on SIP Digest”.

**************************** start of the change *****************************

7.2.1
Solution 2 – Description
The SSO subsystem under the solution can provide some forms of interworking with, or support for, other SSO systems, notably OpenID and Liberty Alliance. The solution to utilize SIP Digest authentication for SSO can maximize commonality with the already defined 3GPP approaches for interworking with non-3GPP-defined SSO system as described in TR33.924 [9] and TR33.980 [8]. In the following a message flow of the authentication process is defined to allow the interworking of the SIP Digest-based SSO with the OpenID [14].

[image: image2.emf]UE

RP(Application

Server)

OP(SSO)

HSS

7.Generate nonce;

store nonce and H(A1)

9.Generate cnonce,H(A1)

and K0;calculate response;

11.Check against nonce;calculate

Xresponse and compare Xresponse with

response;Generate UE authentication

assertion UE_Assert and K0

2.AuthnOpenID request

OpenID identifier

3.Redirect request to OP

OpenID identifier;RP_credential

4.Redirected request to OP

OpenID identifier;RP_credential

6.Get SD-AV&user

profile based on U_credentials

U_credential,realm,qop,algorithm,H(A1)

10.response challenge

cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge

U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP

EK0(K0, nonce1);EK(K1,UE_Assert)

15.redirected to RP

EKr,o(K1,UE_Assert)

5.If RP authentication fails alert UE of

failure and protocol termination. If RP

authentication succeeds check K0: if K0is

valid go to step 12, otherwise step 6

14.Decrypt EK0(K0, nonce1);

obtain nonce1; generate K1

1.Register in IMS

Establishment of

shared secret Kr,o

12.Generate nonce1 and then generate

K1;K0 encryptnonce1

EK0(K0,nonce1);EK(K1,UE_Assert)

16.Decrypt EKr,o(K1,UE_Assert),obtain

UE_Assert and K1;authorized information

for UE UE_Author;EK1(UE_Author)

17.Notify

EK1(UE_Author)

18.Decrype EK1(UE_Author);

access to the requested service

UE Alert, in case of RP authentication failure

Application specific steps,

(steps 16 through 18) which

depend on the RP/UE service

implementation

}

Figure 7.2-5 authentication process of interworking of the SIP Digest-based SSO with the OpenID

The basic steps are as follows:

1. The UE registers in IMS according to the SIP Digest mechanism specified in TS33.203 [3]. After successful registration, the UE obtains an OpenID identifier.

2. The UE issues an authentication request AuthnOpenID to the RP which includes an OpenID identifier.

3. The RP redirects the authentication request sent by the UE which includes the OpenID identifier and the RP identifier (RP_credential).

4. The authentication request is redirected to the OpenID identity provider (OP)

5. The OP authenticates the RP based on the RP identifier. Assuming RP authentication success, the OP checks whether there is already a shared secret K0 between the UE and the OP according to the OpenID identifier. If K0 exists, the process jumps to step 12; otherwise, the process goes on to the next step. (See note following step 18 regarding RP authentication failure.)
Note: The OP is the sole decision point for RP’s authenticity, and this means that any explicit messaging, e.g. to the UE, regarding the OP’s decision on the authenticity of the RP, is redundant and unnecessary.

Note: The RP and the OP shall have a shared secret (Kr,i) using existing mechanism, for example, using the Diffie-Hellman Key Exchange Protocol or pre-shared secret, the details of shared key establishment between the RP and OP are out of scope. With this shared secret the OP can sign subsequent messages and the RP can verify those messages.

6. The OP sends an authentication request to the HSS, then it obtains the SIP Digest authentication vector SD-AV and the user profile based on the U_credential from the HSS. The SD-AV consists of the qop (quality of protection) value, the authentication algorithm, realm, and a hash, called H (A1), of the U_credential, realm, and password. Refer to RFC 2617[5] for additional information on the values in the authentication vector for SIP Digest based authentication. In a multiple HSS environment, the OP may have to obtain the address of the HSS where the UE is stored by querying the SLF.

7. The OP generates a random nonce, stores H(A1) and the nonce against the U_credential.

8. The OP sends a 401 Auth_Challenge to the UE which includes the nonce, the realm, qop, algorithm and U_credential.

9. Upon receiving the challenge, the UE generates a random cnonce and the H(A1), and then generates the shared secret K0 based on the H(A1), the cnonce, etc. It then uses the cnonce as well as parameters provided in the 401 Auth_Challenge such as nonce, U_credential and qop to calculate an authentication response according to RFC 2617[5].
10. The UE sends a response to the OP which includes the cnonce, the nonce, the response, the realm, the U_credential, qop, algorithm, nonce-count and Digest-url.

11. Upon receiving the response, The OP uses the previously stored nonce to check against the nonce included in the response. If the check is successful, the OP calculates the expected response (Xresponse) using the previously stored H(A1) and the nonce together with other parameters contained in the response (e.g.cnonce, nonce-count, qop, as specified in RFC 2617[5]) and uses this to check against the response sent by the UE. If the check is successful the authentication of the UE is succeeded, else the authentication fails. The OP stores an authentication assertion (UE_Assert). If the UE is successfully authenticated, the OP generates the shared secret K0 based on the H(A1), the cnonce, etc.

Editor’s Note: It has to be clarified if and how the stored UE_Assert will be used by the OP. It needs to be explained, how the protocol flow is different for the case where the OP already has a UE_Assert stored.
12. The OP generates a random nonce1 and generates a shared secret K1 based on K0, nonce1. The OP encrypts the nonce1 using K0, i.e. EK0(nonce1); and encrypts the K1 and UE_Assert using Kr,o, i.e. EKr,o (K1,UE_Assert)..

13. The OP sends the UE an message including EK0(nonce1) and EKr,o (K1,UE_Assert) with redirection.

14. The UE decrypts the EK0(nonce1,); and then obtains nonce1; . The UE will generate the shared secret K1 based on K0, nonce1.
15. The message sent by the OP is redirected to the RP including EKr,o (K1,UE_Assert).

16. The RP decrypts the EKr,o (K1,UE_Assert), and obtains UE_Assert and K1. After verifying the UE_Assert, the RP knows that the UE is authenticated.
a) Depending on the application, the RP can generate authorization information for the UE, i.e. UE_Author and can encrypt UE_Author using K1 EK1(UE_Author).

17. The RP has to respond to the UE. with an HTTP response:
a) In the case where the RP applications needs to set up additional credentials, i.e. UE_Author, the response should containthe encrypted UE_Author in the message header

b) If the RP application does not need such additional credentials, the UE receives the service and can skip step 18

18. The UE decrypts the EK1(UE_Author), following browser UE_Author extraction, and then accesses to the requested service.
Steps 16 through 18 are application specific.
If there is a failure in steps 1 through 18 – the authentication procedure stops.

Note: For example, and as stated in section 2, in the case of an RP authentication failure (see step 5) the OP sends an alert message to the UE indicating an RP authentication failure and protocol termination. It is also noted that, given process termination, a response to the request of step 4 is expected by the UE browser.
Note: The interworking with the Liberty Alliance is similar to the interworking with the OpenID.

**************************** end of the change *****************************
**************************** start of the change *****************************

X. References

[1]
OpenID Authentication 2.0 Specification Final, version from December 5, 2007, available: http://openid.net/specs/openid-authentication-2_0.html, retrieved: Jan 7th 2011.
**************************** end of the change *****************************

3GPP

_1350722756.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

2.AuthnOpenID request
OpenID identifier

3.Redirect request to OP
OpenID identifier;RP_credential

4.Redirected request to OP
OpenID identifier;RP_credential

6.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP
EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

15.redirected to RP
EKr,o (K1,UE_Assert)

5.Authentication RP and genarate RP authenticate assertion;check of K0

14.Decrypt EK0(nonce1,RP_Assert);
obtain RP_Assert and nonce1; genarate K1

1.Register in IMS�

Establishment of shared secret Kr,o

12.Generate nonce1 and then generate K1;K0 encrype nonce1 and RP_Assert； EK0(nonce1,RP_Assert);EKr,o (K1,UE_Assert)

16.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1;authorized information for UE UE_Author;EK1(UE_Author)

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

_1356522020.vsd
�

UE�

RP(Application Server)�

OP(SSO)�

HSS�

7.Generate nonce;
store nonce and H(A1)�

9.Generate cnonce,H(A1) and K0;calculate response;

11.Check against nonce;calculate Xresponse and compare Xresponse with response;Generate UE authentication assertion UE_Assert and K0

2.AuthnOpenID request
OpenID identifier

3.Redirect request to OP
OpenID identifier;RP_credential

4.Redirected request to OP
OpenID identifier;RP_credential

6.Get SD-AV&user
profile based on U_credentials
U_credential,realm,qop,algorithm,H(A1)

10.response challenge
cnonce,response,nonce,U_credential,realm,qop,algorithm,digest-url,nonce-count

8.401 Auth_Challenge
U_credential,nonce,,realm,qop,algorithm

13.redirect UE to RP
EK0(K0, nonce1); EK (K1,UE_Assert)

15.redirected to RP
EKr,o (K1,UE_Assert)

5. If RP authentication fails alert UE of failure and protocol termination. If RP authentication succeeds check K0: if K0 is valid go to step 12, otherwise step 6

14.Decrypt EK0(K0, nonce1);
obtain nonce1; generate K1

1.Register in IMS�

Establishment of shared secret Kr,o

12.Generate nonce1 and then generate K1;K0 encrypt nonce1
 EK0(K0,nonce1); EK (K1,UE_Assert)

16.Decrypt EKr,o (K1,UE_Assert),obtain UE_Assert and K1;authorized information for UE UE_Author; EK1(UE_Author)

17.Notify
EK1(UE_Author)

18.Decrype EK1(UE_Author);
access to the requested service

UE Alert, in case of RP authentication failure

Application specific steps, (steps 16 through 18) which depend on the RP/UE service implementation

}

